Impact of the Ocean–Atmosphere Background State in the Tropical Cyclones Cold Wake Magnitude Variability

Mauricio Zapata¹,², Carlos D. Hoyos³, Yuley Cardona³
1. Sistema de Alerta temprana de Medellín y el Valle de Aburrá 2. Universidad Nacional de Colombia, Sede Medellín

Introduction

The reduction of SST as a response of a TC passage is often referred to as TC cold wake. This SST anomaly is typically assessed as a function of TC intensity, analyzing the life cycle of a single TC, without considering the background state of the ocean-atmosphere system and the storm size.

Data and methodology

For every Tropical Cyclone in each of the six ocean basins, we look for the value of 20 C isotherm depth, Sea surface temperature, Latitude, Julian day, Bathymetry, Movement direction, Translation speed, Maximum wind speed and kinetic energy.

Relationship between TC intensity - SST anomaly

For every Tropical Cyclone in the six ocean basins, we looked for the values of 20 isothen depth.

Oceanic model results

SST anomalies during Hurricane Ike in 2008. (a) Satellite retrievals, (b) Results from ORCO, and (c) ocean temperature profile from ORCO at the green star in Figure (a). Solid contours represent the 26, 24, 22 and 20.

Conclusions

- TCs’ north (or south) of 25°N are related to shallower thermoclines, therefore the pumping is more efficient.
- TC intensity is not the most relevant parameter in order to explain the cold wake magnitude variability.
- Thermocline depth and Kinetic energy have a significant role in the cold wake magnitude.
- The processes that drive the cold wake are different in each ocean basin due to its geographical and background dynamical differences.

Acknowledgments

This work was supported by Área Metropolitana de Medellín y del Valle de Aburrá, Municipio de Medellín, Grupo EM, and ISAGEN under the contract CC1504 of 2013. This work was also supported by Universidad Nacional de Colombia, Sede Medellín, Facultad de Mines.