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A rapid evolution is taking place in weather and climate prediction (Shapiro et al., 2010;
Bauer et al., 2015). Historically, there has been a clear separation betweenweather and climate
prediction, despite the fact that both use similar numerical tools. Weather prediction refers to
the prediction of daily weather patterns from a few days up to about 2 weeks in advance,
whereas climate forecasting refers to the prediction of climate fluctuations averaged over a
season and beyond.1 This time-scale separation between weather and climate prediction
has been accompanied by a divide in the weather and climate research communities, for

1The terms forecasting and prediction are used synonymously here; in some cases, forecasting is preferred in the
context of forecast use and verification, while prediction is more general.

3Sub-seasonal to Seasonal Prediction Copyright # 2019 Elsevier Inc. All rights reserved.
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the historical reasons described later in this chapter. However, a convergence is taking place,
spurred by the growing realization that weather and climate take place on a continuum of
time and space scales. Coherent phenomena on a range of scales along this continuum lead
to predictability on scales from subdaily, to weeks, months, years, decades, and beyond
(Hoskins, 2012). The sub-seasonal to seasonal time range (abbreviated as S2S), the focus of
this book, sits where the weather and climate scales meet and corresponds to predictions be-
yond 2 weeks, but less than a season. It is also a key time range for seamless weather/climate
prediction, in which a single model is used to make forecasts all the way from weather scales
to seasonal or longer climate scales or, in a more limited interpretation, that the underlying
predictability is seamless across timescales, even if pragmatism dictates the use of different
models for forecasting at different lead times (Brunet et al., 2010). We note that the term S2S
has recently been used more broadly to include seasonal forecasts up to 12 months ahead
(NAS, 2016).

Objective weather and climate forecasting can be divided into two branches: empirical (or
statistical) forecasting and numerical weather/climate prediction with dynamical models.
Empirical forecasting has been practiced in one form or other for more than a hundred years,
if not thousands of years (e.g., Taub, 2003); it consists of making forecasts based on past ex-
perience or, in the modern era, by using observational data of current and past states of the
weather or climate to fit (or train) a statistical model. Empirical methods can be simple (e.g.,
persistence, where the current weather/climate is predicted to persist for a certain period of
time) or more sophisticated (e.g., regression models or discriminant analysis). For example,
the analogmethod of weather forecasting involves examining today’s state of the atmosphere
and finding days in the past with similar weather patterns (analogs). The forecaster then
would predict the weather based on these past analog days. Correspondingly, an analog sea-
sonal climate forecast might be based on past years with similar phases of the El Niño—
Southern Oscillation (ENSO).

Numerical weather and climate prediction, on the other hand, uses mathematical (dynam-
ical) models of the atmosphere or Earth system to predict the weather or the climate. The
mathematical models used for short-range weather prediction or long-range climate predic-
tion are based on the same physical principles and set of equations, called the primitive
equations, with the primary distinction being that climate models need to include additional
components of the climate system, such as the ocean, depending on the forecast lead time
being targeted. These equations are used to evolve the density, pressure, and potential tem-
perature scalar fields and the air velocity (wind) vector field of the atmosphere either on a
latitude-longitude grid or in spectral space, through time. The effects of subgrid-scale pro-
cesses, including convection, radiation, and interactions with the underlying surface, are
not treated explicitly but instead are parameterized in terms of the resolved-scale variables.
Although empirical methods can be used for sub-seasonal to seasonal prediction, this book
focuses largely on dynamical numerical prediction models.

We begin this introductory chapter with a brief history of dynamical weather and climate
prediction, together with theWorldMeteorological Organization (WMO) programs that were
created to coordinate these activities and that gave birth to S2S. We then introduce sub-
seasonal to seasonal forecasting research and practice, from the discovery of S2S predictabil-
ity sources, improvements in numerical weather prediction (NWP), development of seamless
forecasting, and the demand from applications. The chapter concludes with a summary of the
structure of this book.
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1 HISTORY OF NUMERICAL WEATHER AND CLIMATE
FORECASTING

Numerical weather prediction (NWP) had its roots early in the 20th century, when a better
understanding of atmospheric physics led to the establishment of the primitive equations of
the atmosphere (Abbe, 1901; Bjerknes, 1904). The first numerical weather forecast was
attempted in 1922 by the English scientist Lewis Fry Richardson, in a report called
“Weather Prediction byNumerical Process”; he performed his studywhile working as an am-
bulance driver in World War I. In this publication, he described how small terms in the prog-
nostic fluid dynamical equations governing atmospheric flow could be neglected, and a finite
differencing scheme in time and space could be devised, to find numerical prediction solu-
tions. He constructed a 6-hour forecast of pressure at two points in central Europe by hand. It
took him about 6 weeks to produce this 6-hour forecast; unfortunately, it falsely predicted a
surge in sea level pressure when in reality, the pressure remained about the same. The num-
ber of calculations required to perform weather forecasts is so huge that it was only with the
advent of digital computers and the development of numerical methods that weather fore-
casting in real time became possible.

The first successful computer weather forecast was produced in 1950 with the ENIAC
(Electronic Numerical Integrator and Computer) digital computer, taking almost 24 hours
tomake the 24-hour forecast (Charney et al., 1950). From there, Carl-Gustav Rossby produced
the first operational weather forecast (i.e., routine predictions for practical use) based on the
barotropic equation in September 1954. Numerical weather forecasting began shortly after-
ward on a regular basis in the United States, and at around the same time in other countries.
For many years, weather forecasts were issued only from a single integration of the atmo-
spheric model from the best estimate of the atmospheric initial condition. Following Edward
Lorenz’s groundbreaking 1963 paper “Deterministic Nonperiodic Flow,” published in Journal
of the Atmospheric Sciences, which showed how small changes in the initial conditions could
lead to very different forecasts due to the nonlinearity of the primitive equations, ensemble
forecasts started to be produced operationally in the 1990s. Instead ofmaking a single forecast
of the most likely weather pattern, a set (or ensemble) of forecasts were produced, giving an
indication of the range of possible future states of the atmosphere, and thus the uncertainty of
the forecast, stemming from imperfect knowledge of the initial conditions and shortcomings
in model formulation. Today, ensemble weather forecasts are initialized using large numbers
of perturbed initial conditions, and the model output is often presented in the form of
probabilities.

Getting the best possible estimate of the atmospheric initial conditions is central to NWP,
and advances in forecast skill over the past 10 years have come in roughly equal parts from
improving these estimates and developing models (Bauer et al., 2015). Various methods are
used to gather observational data for forecast initialization (radiosondes, weather satellites,
and commercial aircraft and ship reports). These observations are generally irregularly
spaced and contain errors, so they need to be processed to perform quality control and obtain
values at locations that are usable by the model’s mathematical algorithms; this process is
called data assimilation and objective analysis. Then the numerical model can predict how the
weather will evolve from its initial state as an initial value problem.
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Numerical weather forecasting has improved significantly since the 1950s thanks to im-
proved scientific knowledge, huge improvement in computing capacity, and the advent of
satellite data. Computing power has increased by about an order of magnitude every 5 years
since the 1980s. Data assimilation algorithms employ the forecast model and use the order of
107 observations per day to derive initial conditions that are physically consistent (Bauer et al.,
2015). Improvements in forecast skill have been objectively and quantitatively assessed
against verifying observations. In the range of 3–10 days ahead, skill has increased by about
1 day per decade, so that today’s 10-day forecast is as accurate as the 7-day forecast in the
early 1980s, as shown in Fig. 1 of Bauer et al. (2015). The predictive skill in the Northern
and Southern hemispheres is almost equal today thanks to the effective use of satellite data
providing global coverage.

The first seasonal forecasts issued by a government office were empirical, and they were
probably those issued by the IndianMeteorological Department (IMD) in the 1880s; they used
Himalayan snow cover as a statistical predictor for the summermonsoon. The work of Henry
Blanford and Sir Gilbert Walker, both early directors of the IMD in colonial times, were mo-
tivated by the devastating droughts and famines in India in the late 19th century, which, it has
been argued (Davis, 2000), gave birth to the modern field of tropical meteorology.

The first dynamical climate model was developed in 1956 by Norman Phillips, who devel-
oped amathematical model that realistically depictedmonthly and seasonal tropospheric cir-
culation patterns. Following Phillips’s work, several groups began working to create general
circulation models (GCMs) based on the atmospheric primitive equations on the sphere. This
development closely paralleled that of NWP models, but with lower horizontal resolution to
enable longer simulations, and with parameterizations strictly conserving mass and energy
necessary for studies of seasonal to interannual climate variability and climate change. The
first GCM that combined both oceanic and atmospheric processes was developed in the late
1960s at the Geophysical Fluid Dynamics Laboratory at the National Oceanic and Atmo-
spheric Administration (NOAA).

Climate predictability comes from the relatively slow evolution (i.e., taking months and
even longer) of the atmospheric lower boundary conditions such as sea surface temperature
(SST), sea ice, soil moisture, and snow cover. For instance, SST anomalies associated with El
Niño or its opposite, La Niña, can be predicted a few months in advance (Barnston et al.,
2012), leading to predictability in the impact of these anomalies on the atmosphere, such
as a reduction of tropical storm activity in the Atlantic, or rainfall over many parts of the tro-
pics, associated with El Niño (Gray, 1984; Ropelewski and Halpert, 1987). However, this im-
pact of SST on daily weather is not deterministic, and the resulting predictability in seasonal
averaged weather was called “predictability of the second kind” by Lorenz (1975).

This fundamental distinction between weather and seasonal climate prediction led to the
introduction of probabilistic concepts—including ensemble prediction—into the latter well
before the former. Seasonal climate forecasts are (or should be) issued in terms of changes
or shifts in climatological probability distribution of weather parameters such as temperature
and precipitation; climate forecasting on seasonal timescales and longer is not about
predicting the exact weather several months or years in advance, but rather about predicting
future changes in its probability distribution over large averaging time periods (ranging from
seasons to multiple decades). The importance of ENSO-related, tropical SST anomalies as
boundary forcing on the atmosphere led to the development of two-tier seasonal forecasting
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systems, consisting of separate components for (1) predicting the evolution of tropical Pacific
SST, and (2) simulating the atmospheric response using ensembles of atmospheric GCMs in
multimodel combination. This two-tier approach popularized the paradigm of seasonal fore-
casting as a boundary value problem, and it was used in real-time seasonal climate forecast-
ing at several centers, including at the International Research Institute for Climate and Society
(IRI) between 1998 and 2016 (Mason et al., 1999). Fundamentally, however, all dynamical pre-
diction is an initial value problem for the evolution of the phenomena that have predictability
on the relevant timescale (Hoskins, 2012).

As mentioned already, climate and NWPmodels are both based on the same set of numer-
ical representations of the primitive equations. However, climate models need to include ad-
ditional components of the Earth system in order to represent sources of climate predictability
on longer timescales. These include the ocean, land surface, and cryosphere, as well as atmo-
spheric chemistry (including aerosols, ozone, and greenhouse gases) and amore detailed rep-
resentation of the stratosphere. The coupling of GCMs of the atmosphere and ocean, typically
developed separately by research groups of atmospheric scientists and oceanographers, re-
mains a big challenge for climate modelers because small imbalances in the surface fluxes
between the models can lead to large drifts in climate when the models are coupled together.

The time evolution of the other components of the climate system is usually assumed to be
too small to have a significant impact on weather forecasts a few days in advance. This is why
weather forecasts historically are based on only an atmospheric global or regional circulation
model, in which sea-ice and SST fields are simply persisted from the initial conditions, and
with other components of the Earth system set at their climatological values (e.g., aerosols).
However, this additional complexity of climate models has been offset by greater intricacy in
the formulation of initial conditions in weather forecasting. Atmospheric observation and
data assimilation are traditionally associated with the weather forecasting community rather
than the climate forecasting community because of the key importance of good initialization
for weather forecasting, while seasonal climate forecasts largely rely on predictability of the
second kind, associated with the evolution of the SST boundary conditions. Another key
difference between weather and seasonal forecasting is the resolution of the atmospheric
model. Because the integrations aremuch shorter inweather forecasting than in seasonal fore-
casting, weather forecasts are usually produced with much finer horizontal and vertical res-
olution than climate models. The typical resolution of seasonal climate forecasts, such as in
theNorthAmericanMultimodel Ensemble (NMME; Kirtman et al., 2014), and simulations for
the Climate Model Intercomparison Project Phase 5 (CMIP5; Taylor et al., 2012) is around
100 km, whereas global weather forecasts are now produced routinely at a resolution of
up to 8 km, and short-range forecasts with regional models have a resolution of a few
hundred meters.

Seasonal forecasting today is carried out routinely by 12WMO-designated Global Produc-
ing Centers (GPCs), as well as by a consortium of research and operational centers in North
America—the NMME—and other nongovernmental centers, including the APEC Climate
Centre (APCC) and IRI; typically, the forecasts are issued toward the middle of every month.
All these centers now use coupled ocean-atmosphere (one-tier) models, in which the initial
conditions of the ocean, land, and (in some cases) sea ice are prescribed; seasonal climate
prediction is largely an initial value problem in these models, as opposed to a boundary
value problem in the two-tier approach. The key boundary conditions in these coupled
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ocean-atmosphere-land-ice models are prescribed greenhouse gas concentrations; these var-
iations are especially important for making hindcasts for past years, which are needed for
assessing forecast skill.

Climate prediction is also carried out on longer timescales to make decadal predictions,
and especially to make projections of anthropogenic climate change. The IPCC has coordi-
nated successive climate change assessments based on increasingly sophisticated Earth
system models, which are GCMs to which further components of the Earth system relevant
to longer timescales have been added (e.g., ice sheets).

2 SUB-SEASONAL TO SEASONAL FORECASTING

As mentioned previously, sub-seasonal to seasonal prediction (forecasts from about
2 weeks to a season ahead) addresses the gap between medium-range weather forecasting
and seasonal forecasting. According to the WMO definitions (http://www.wmo.int/
pages/prog/www/DPS/GDPS-Supplement5-AppI-4.html), the S2S scale corresponds to
extended-range weather forecasting (10–30 days), and the first part of long-range forecasting
(30 days up to 2 years). These ranges are approximate, and a committee formed by the
National Academy of Sciences in the United States recently defined the S2S range as between
2 weeks and 12 months (NAS, 2016). As discussed previously, there are good historical rea-
sons for the split between weather and seasonal climate forecasting: S2S was considered a
difficult time range for weather forecasting, being both too long for much memory of the
atmospheric initial conditions and too short for SST anomalies to be felt sufficiently strongly,
making it difficult to beat persistence and leading to the notion of a gap between the two
ranges.

A pioneering sub-seasonal forecast attempt was made by Miyakoda et al. (1983). This pa-
per showed how the pronounced blocking event of 1977, which generated exceptional snowy
conditions over Florida, was successfully reproduced in 1-month forecasts produced by a
GCM (Fig. 6 in Miyakoda et al., 1983). In addition, Miyakoda et al. (1986) found some mar-
ginal skill in eight January 1-month integrations using a 10-day runningmean filter applied to
the prognoses. The use of 10-day low-pass filtering is significant because it implicitly recog-
nizes the importance of time aggregation, which introduces a climate forecasting element.
The report of successful forecasts beyond day 10 triggered a great deal of interest at that time,
and many of the world’s operational prediction centers experimented with extended-range
forecasts (from 10 to 30 days ahead) (Tracton et al., 1989; Owen and Palmer, 1987; Molteni
et al., 1986; D!equ!e and Royer, 1992).

The European Centre for Medium-Range Weather Forecasts (ECMWF) used its opera-
tional forecast model to produce a pair of 31-day forecasts starting at 2 consecutive days
for every month from April 1985 to January 1989 (Palmer et al., 1990). These experiments
generally showed somemoderate skill after 10 days (Miyakoda et al., 1986; D!equ!e and Royer,
1992; Brankovic et al., 1988), particularly when comparing the forecast to climatology.
However, a particularly tough test for extended-range forecasting is to beat the skill of
persistence forecasts. At ECMWF, the extended-range experiments described in Molteni
et al. (1986) failed to produce forecasts after 10 days that were significantly better than
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persisting the medium-range operational forecasts. As a consequence, this experiment did
not lead to an operational extended-range forecasting system at ECMWF.

Anderson and Van den Dool (1994) added another pessimistic note to this problem, dem-
onstrating that some apparent high-quality forecasts in the extended range that triggered the
initial enthusiasm for monthly forecasting could have occurred by chance. Using the
extended-range model from the National Centers for Environmental Prediction (NCEP)
Dynamical Extended-Range Forecasting (DERF) (Tracton et al., 1989), they found that after
12 days, the model did not produce better forecasts than a no-skill control. These disappoint-
ing results reinforced for many years the idea that the sub-seasonal to seasonal timescale was
a “predictability desert.” However, interest in the S2S time range revived in the last decade
thanks to four factors.

2.1 The Discovery of Sources of Sub-seasonal to Seasonal Predictability
Associated With Atmosphere, Ocean, and Land Processes

Although they are not yet fully understood, the most important sources to date are the
following:

• The Madden-Julian Oscillation (MJO): As the dominant mode of intraseasonal variability
of organized convective activity, theMJO has a considerable impact not only in the tropics,
but also in the middle and high latitudes. In addition, it is considered a major source of
global predictability on the sub-seasonal timescale (e.g., Waliser, 2011).

• Soil moisture: Memory in soil moisture can last several weeks and influence the
atmosphere through changes in evaporation and the surface energy budget, affecting sub-
seasonal forecasts of air temperature and precipitation over certain regions during certain
seasons (e.g., Koster et al., 2010b).

• Snow cover: The radiative and thermal properties of widespread snow cover anomalies
have the potential to modulate local and remote climate over monthly to seasonal
timescales (e.g., Sobolowski et al., 2010; Lin and Wu, 2011).

• Stratosphere-troposphere interaction: Signals of changes in the polar vortex and the
Northern Annular Mode/Arctic Oscillation (NAM/AO) are often seen to propagate
downward from the stratosphere, with the anomalous tropospheric flow lasting up to
about 2 months (Baldwin et al., 2003).

• Ocean conditions: Anomalies in SST lead to changes in air-sea heat flux and convection that
affect atmospheric circulation. Forecasts of tropical intraseasonal variability are found to
improve when a coupled model is used (e.g., Woolnough et al., 2007; Fu et al., 2007).

2.2 Improvements in Numerical Weather Forecasting

The skill of medium-range forecasting has improved continuously over the past two
decades, due to model improvements and better data and forecast initialization. These im-
provements have not been limited to the first 2 weeks. In particular, dynamical models have
shown remarkable improvements in MJO forecast skill scores in recent years (Fig. 1). About
10 years ago, the forecast skill of the MJO by dynamical models was considerably less than
that of empirical models (e.g., Chen and Alpert, 1990; Jones et al., 2000a; Hendon et al., 2000),
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with skill only up to days 7–10. Recently, skillful MJO forecasts have been reported well
beyond 10 days (e.g., Kang and Kim, 2010; Rashid et al., 2011; Vitart and Molteni, 2010;
Wang et al., 2014; Vitart, 2014). This progress can be attributed to model improvement
(e.g., Bechtold et al., 2008a) and better initial conditions, as well as the availability of historical
reforecasts to calibrate the forecasts. Vitart (2014) also reported a significant improvement in
2-m temperatureweeklymean prediction in the extratropics for weeks 3 and 4. Newman et al.
(2003) found some strong predictability of week 2 and week 3 averages in some regions of the
Northern Hemisphere using a statistical linear inverse model (LIM). These improvements in
numerical prediction have provided an important stimulus for operational centers to revisit
the sub-seasonal to seasonal prediction problem.

2.3 Development of Seamless Prediction

As alluded to already, the unifying concept of weather-climate predictability across
multiple timescales has become increasingly prevalent over the last decade, as witnessed
by several recent publications (Hurrell et al., 2009; Brunet et al., 2010; Shapiro et al., 2010;
Hoskins, 2012). Fig. 1 in Hurrell et al. (2009) illustrates this concept, in which slower
larger-scale climate phenomena provide the background for smaller and faster scales, while
the integrated effects of the latter can exert important feedback about the former. This concept
is epitomized at the S2S scale, which bridges between planetary scale phenomena (including
ENSO and the MJO) and local daily weather conditions. Weather and climate have always
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FIG. 1 Evolution of the MJO skill scores (bivariate correlations applied to Wheeler-Hendon index) since 2002. The
MJO skill scores have been computed on the ensemble mean of the ECMWF reforecasts produced during a complete
year. The blue, red, and brown lines indicate the day when the MJO bivariate correlation reaches 0.5, 0.6 and 0.8,
respectively. The triangles show the skill scores obtained when rerunning the 2011 reforecasts with the version of
the IFS that was implemented operationally in June 2012 (cycle 38R1). The vertical bars represent the 95% confidence
interval (CI) computed using a 10,000-bootstrap resampling procedure (Vitart, 2014).
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been applied sciences, and indeed the quest for better early warning of high-impact weather
events has contributed to the revival of interest in S2S. There is a long history of studies of
so-called low-frequency variability (T > 10 days) of midlatitude weather, beginning with
the work of Rossby and his contemporaries on index cycles describing sub-seasonal vacilla-
tions between blocked and zonal flows in the Northern Hemisphere midlatitudes. This early
work led to studies on multiple equilibria and weather regimes (Charney and DeVore, 1979;
Charney and Straus, 1980; Reinhold and Pierrehumbert, 1982) and the application of dynam-
ical systems theory to S2S timescales (Ghil and Robertson, 2002).

In terms of forecasting, atmospheric models are run at the highest-possible resolution to
better simulate the representation of weather fronts. Climate forecasting, on the other hand,
is based on more complete Earth system models to better represent the evolution of atmo-
spheric boundary conditions with less emphasis on high resolution because the simulation
of day-to-day weather variability was not assumed to be fundamental. This difference
between climate and weather forecasting is starting to disappear for the reasons summarized
in this chapter and pursued in more depth in the other chapters in this book.

How can the theoretical 2-week limit of Lorenz be broken? Two aspects of the seamless
prediction paradigm come into play. The first is that the Lorenz limit was derived in the con-
text of midlatitude atmospheric dynamics of baroclinic waves, which have life cycles of about
a week. The key to predictability on longer timescales is the existence of predictable phenom-
ena on those timescales, such as the MJO. The second aspect is that averaging on the relevant
timescale is critical; while the details of the weather on a specific day will not be predictable
beyond 1–2 weeks, weekly or longer aggregates of weather statistics may be predictable in
many cases, in the probabilistic sense of climate forecasts. What should the averaging period
be for S2S forecasts? Zhu et al. (2014) have suggested that the averaging period should in-
crease in tandemwith the lead time, with a 1-week averaging corresponding to a 1-week lead
time, and so on, as shown in Fig. 2.

Because weather forecast models are become increasingly skillful and are able to produce
skillful forecasts up to 9 days in advance, the weather community has shown increasing in-
terest in using more complex models that include other components of the Earth system to
push the limit of predictive skill out a bit more. For example, most operational weather
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FIG. 2 Schematic of time window and lead time definitions. The horizontal axis represents the forecast time from
the initial condition. The expression “1d1d” refers to an averaging window of 1 day at a lead time of 1 day, “2d2d”
represents an averaging window of 2 days at a lead time of 2 days, and so on. Note that 1d1d is what is usually called
“day 2” in some papers, and “1w1w” is what is usually called “week 2” (Zhu et al., 2014).
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forecasting systems still use persisted SSTs (this means that the atmospheric model sees the
same SST patterns as in the initial conditions during the full length of the model integration)
because it was assumed that SST variations are too slow and small to affect weather forecast-
ing in a significant way. However, ocean-atmosphere interaction has been found more
recently to have a significant impact on some atmospheric phenomena, like the MJO (e.g.,
Woolnough et al., 2007) and tropical cyclone intensity (Bender and Ginis, 2000). As a conse-
quence, some operational weather forecasting systems now include an ocean and a sea ice
model, such as at ECMWF ( Janssen et al., 2013), which previously had been used only in
climate models.

Conversely, there is a growing interest in the climate community to better represent
mesoscale weather events in long-range simulation. This is for two main reasons:

• A good representation of weather within climate (synoptic scale events) can feed back into
a better representation of the large-scale climate.

• Being able to represent synoptic scale events may allow the direct prediction of impact of
climate change on the statistics of the weather. For instance, this would help answer
question such as: will global warming impact the number and severity of winter storms
over Europe?

There is also a strong interest in testing climate models in weather configurations to help
identify systematic errors in models and improve their ability to predict weather events (e.g.,
a WMO project called Transpose-AMIP, in which climate models are used experimentally for
weather prediction). There have also been efforts to run weather forecast models in climate
mode to test the evolution of systematic errors associated with slowly varying boundary con-
ditions (e.g., Hazeleger et al., 2010).

From the physical perspective, there are no overriding reasons why weather and climate
models should be different, and some operational centers like the United Kingdom’s Met Of-
fice (UKMO) already use the same atmospheric model for weather and climate forecasting
(the unified model, see http://www.metoffice.gov.uk/research/modelling-systems/
unified-model). This evolution toward seamless prediction benefits sub-seasonal prediction,
inwhich atmospheric predictability comes from both the initial conditions and boundary con-
ditions. On the other hand, for practical reasons, it may be more efficient to run lower-
resolution models with more ensemble members for longer lead times, and the optimal ini-
tialization strategy may also depend on the lead time and the phenomena that are the sources
of predictability for that lead time.

2.4 Demand From Users for S2S Forecasts

As we have seen, the developments of both weather and climate science and forecasting
have strongly use-inspired histories. Thus, it can come as no surprise that societal factors play
an important role in answering the question “Why S2S?” The research program of the WMO,
a specialized agency of the UnitedNations (UN)whosemandate covers weather, climate, and
water resources with the 191 UN member-states and territories, is organized around two
components: the World Climate Research Programme (WCRP), charged with determining
the predictability of climate and the effect of humans on climate; and the World Weather
Research Programme (WWRP), charged with advancing society’s ability to cope with
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high-impact weather through research focused on improving the accuracy, lead time, and uti-
lization of weather forecasts. Both WWRP and WCRP have been strong proponents for the
development of S2S forecasts for societal benefit, and the WWRP/WCRP S2S Prediction joint
research project is the result of those combined forces of improving early warning of climate
extremes and understanding human influence on their generation.

While many end-users benefit from applying weather and climate forecasts in their
decision-making, many studies suggest that such information is underutilized across a wide
range of economic sectors (e.g., Morss et al., 2008b; Rayner et al., 2005; O’Connor et al., 2005;
Pielke Jr. and Carbone, 2002; Hansen, 2002). This may be explained partly by the presence of
gaps in forecasting capabilities, such as at the sub-seasonal scale of prediction, as well as the
large gap between the physical science and end-user domains, which includes the complex
task of bringing forecast information into the sphere of multifaceted decision-making.

The sub-seasonal to seasonal scale is especially relevant, as it has the potential to bridge
between applications at daily weather timescales and much longer seasonal through decadal
climate timescales, where in both cases considerablymore societal and economic research has
been conducted (e.g., decision and economic valuation studies and climate change impact
and adaptation studies). It is therefore an ideal scale to improve forecasts and to evaluate
the development, use, and value of predictive information in decision-making. Extending
downward from the seasonal scale, a seasonal forecast might inform a crop-planting choice,
while sub-monthly forecasts could help inform tactical farming decisions such as when to
irrigate a crop or apply fertilizer or pesticides. This wouldmake the cropping calendar a func-
tion of the sub-seasonal to seasonal forecast, and thus dynamic in time. In situations where
seasonal forecasts are already in use, sub-seasonal ones could be used as updates, such as
estimating end-of-season crop yields. Sub-seasonal forecasts may play an especially impor-
tant role where initial conditions and intraseasonal oscillation yield strong sub-seasonal pre-
dictability, while seasonal predictability is weak, such as in the case of the Indian summer
monsoon. For example, extending upward from the application of NWP, which is often rou-
tine, there is the potential opportunity to extend flood forecasting with rainfall-runoff
hydraulic models beyond days to weeks.

In the context of humanitarian aid and disaster preparedness, the Red Cross Red Crescent
Climate Centre/IRI have proposed a Ready-Set-Go concept for using forecasts from weather
to seasonal (Goddard et al., 2014). In this formulation, seasonal forecasts are used to begin the
monitoring of mid- and short-range forecasts, update contingency plans, train volunteers,
and enable earlywarning systems (Ready); sub-monthly forecasts are used to alert volunteers
and warn communities (Set); and weather forecasts are used to activate volunteers, distribute
instructions to communities, and evacuate areas if needed (Go). This paradigm could be use-
ful in other sectors as well, as a means to frame the contribution of sub-seasonal forecasts to
climate service development within the Global Framework Climate Services (GFCS; Vaughan
and Dessai, 2014), which provides a worldwide mechanism for coordinated actions to en-
hance the quality, quantity, and application of climate services; these services aim to equip
decision-makers in climate-sensitive sectors with higher-quality information to help them
make climate-smart decisions, helping societies better adapt to climate change.

In principle, advanced notification, on the order of 2 to several weeks, of tropical storms,
severe heat or cold waves, the onset or uncharacteristic behavior of the monsoonal rains, and
other potentially high-impact events, could yield substantial benefits through reductions in
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mortality andmorbidity and economic efficiencies across a broad range of sectors. Realization
of the potential value of such information, however, is a function of several variables, includ-
ing the sensitivity of an individual, group, enterprise, or organization (or something it values)
to particular weather events; the extent and qualities of its exposure to the hazard; its capacity
to act to mitigate or manage the impacts such that losses are avoided and benefits are en-
hanced; and the ability of predictive information to influence its decisions to take action.
Unlocking value, therefore, involves much more than creating a new or more accurate
prediction, product, or service.

A type of S2S climate forecast has already been popular in applied settings for some time, in
the formofweather-within-climate seasonal forecasts. For example, the overall frequency of rainy
days over the growing season is a key variable for rainfed crops because evenly distributed
rainfall is much more beneficial to plants than a few intense downpours with long dry spells
in between (Hansen, 2002). It has been shown that in the tropics, seasonal predictability of daily
rainfall frequency is often higher at local scale than the seasonal rainfall total (Moron et al.,
2007), potentially increasing the usefulness of forecasts by increasing both their salience and
credibility (Meinke et al., 2006). Seasonal forecasts tailored to agricultural use thus have started
to target the number of rainy days occurring over a particular 3-month season rather than the
usual 3-month rainfall average. These weather-within-climate forecasts have seasonal lead
time, but the target variable is sub-seasonal. This topic is discussed further in Chapter 3.

3 RECENT NATIONAL AND INTERNATIONAL EFFORTS ON
SUB-SEASONAL TO SEASONAL PREDICTION

For the reasons mentioned up to now in this chapter, there recently has been a growing
interest in sub-seasonal to seasonal prediction. Ten years ago, only two operational centers,
the Japan Meteorological Agency (JMA) and the ECMWF, were producing forecasts at the
sub-seasonal time range. Today, at least ten operational centers and most of the WMO GPCs
are issuing sub-seasonal to seasonal forecasts routinely.

In 2013, theWWRP andWCRP launched a 5-year joint research initiative, the Sub-seasonal
to Seasonal Prediction Project (S2S), with the goal of improving forecast skill and understand-
ing of the sub-seasonal to seasonal timescale, as well as promoting its uptake by operational
centers and exploitation by the application communities (Vitart et al., 2012b). A major
outcome of this project has been the establishment of a database of near-real-time forecasts
(3 weeks behind real time) and reforecasts from 11 operational centers across the world
(Vitart et al., 2017): the Australian Bureau of Meteorology (BoM), China Meteorological
Administration (CMA), ECMWF, Environment and Climate Change Canada (ECCC), the
Institute of Atmospheric Sciences and Climate (ISAC) with the Italian National Research
Council, Hydro-meteorological Centre of Russia (HMCR), JMA, KoreaMeterological Admin-
istration (KMA), M!et!eo-France/Centre National de Recherche Meteorologique (CNRM),
National Centers for Environmental Prediction (NCEP) and the UKMO. This database pro-
vides an important tool to advance our understanding of the S2S time range and help
evaluate the benefit of multimodel sub-seasonal prediction. Sub-seasonal to seasonal predic-
tion is also central to several current U.S. initiatives, such as the NOAA/MAPP initiative
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funded by NOAA. There are also efforts in the United States to enhance collaboration be-
tween agencies such as the U.S. navy, NOAA, the National Aeronautical and Space Admin-
istration (NASA) and the National Science Foundation (NSF) for the development and
implementation of an improved Earth system prediction capability (ESPC) on timescales
ranging from a few days to weeks, months, seasons, and beyond.

4 STRUCTURE OF THIS BOOK

This book has four parts. Part I, “Setting the Scene,” addresses the question of the reasons
to use sub-seasonal prediction, which has been briefly discussed in this first chapter. It pro-
vides background on NWP and an introduction to ensemble prediction methods. From that
basis, it introduces the continuum spatial-scale dependence of the forecast time horizon, with
larger spatiotemporal scales predictable for longer into the S2S range and beyond, and dis-
cusses the concept of climate predictability of weather statistics based on aggregation in time
and space (Chapters 2 and 3). Part I concludes with a theoretical consideration of the poten-
tially predictable modes on S2S scales from the point of view of atmospheric dynamics
(Chapter 4).

Part II, the largest part of the book, discusses many of the sources of sub-seasonal predict-
ability identified so far: the MJO (Chapter 5); extratropical waves, oscillations and regimes
(Chapter 6); tropical-extratropical teleconnections (Chapter 7); land surface processes
(Chapter 8); midlatitude ocean-atmosphere interaction (Chapter 9); sea ice (Chapter 10);
and the stratosphere (Chapter 11). Chapter 6 shows an example of how the theoretical frame-
work of dynamical systems provides practical tools for low-order empirical modeling and
prediction of S2S variability.

Part III of the book is devoted to several S2S modeling and forecasting issues: the design of
forecasting systems used for sub-seasonal prediction (Chapter 12); the generation of ensemble
forecasts and data assimilation (Chapter 13); the importance of high-resolution modeling
(Chapter 14); the development and testing of S2S forecast products through forecast calibra-
tion and multimodel combination (Chapter 15); and verification methods (Chapter 16).
A detailed overview of the medium-range and sub-seasonal systems currently used at oper-
ational forecasting centers around the world, including their initialization and generation
methods, is provided in Chapter 13.

Part IV of the book is dedicated to the use of sub-seasonal forecasts in applications, begin-
ning with the potential to provide early warning of extreme weather events (Chapter 17);
seamless prediction of monsoon onset and active/break phases (Chapter 20). This is followed
by a chapter on the seamless framework for the early-action use of sub-seasonal forecasts
(Ready-Set-Go concept) developed in the humanitarian aid community (Chapter 18); commu-
nication and dissemination of forecasts and engaging user communities (Chapter 19); lessons
learned from 25 years informing sectoral decisions with probabilistic climate forecasts in the
agricultural and energy sectors in Uruguay (Chapter 21); and predicting climate impacts on
health at S2S timescales (Chapter 22).

The book concludes with a brief epilogue on prospects for the future of S2S in Chapter 23.
While each chapter is largely self-contained, the references have been consolidated at the

end of the book since many are cited in multiple chapters.
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1 INTRODUCTION

Weather and climate are two aspects of a single reality, the time-evolving atmosphere, as it
interacts with the surrounding geospheres. Simplistically, weather can be defined as the in-
stantaneous manifestation of this reality, while climate refers to weather conditions or their
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statistics over extended (typically seasonal or longer) time periods. As discussed later in this
chapter, the conditions of the atmosphere and its surrounding spheres can be predicted sci-
entifically. In general, more specifics of the expected weather can be foreseen at short lead
times, while fewer details of the instantaneous weather are predictable at longer ranges.
In particular, specificity about the nature, timing, and position of weather events becomes
increasingly elusive as the lead time of forecasts increases.

With advances in the science and technology of prediction, the quality of weather forecasts
also has improved, extending the time range for which specific weather forecasts can be made.
For example, over the Northern Hemisphere extra tropics, 10-day forecasts of synoptic-scale
features are as skillful today as 7-day forecasts were 30 years ago (see Fig. 1).1 Sub-seasonal to
seasonal (S2S) forecasting refers to the time range beyondwhich prediction of weather with finer
granularity is lost (today, around 15 days lead time), but lower, sub-seasonal time-frequency
and larger spatial-scale variations are still predictable (up to a season or so). After a discussion
in Section 2 on the scientific basis for and the evolution of methodologies used in weather fore-
casting, Section 3 will review, in a historical context, how improved forecast techniques have
extended the practical limit of weather forecasting. Forecast techniques used in low-skill

FIG. 1 Monthly averaged forecast skill measured by anomaly correlation coefficient for the 500-hPa geopotential
height high-resolution operational forecasts issued by the ECMWF. The pair of blue, red, green, and yellow lines show
the skill of the 3-, 5-, 7-, and 10-day forecasts over theNorthern Hemisphere (thick lines) and Southern Hemisphere (thin
lines); the shading between the pairs of lines indicates the difference between the skill over the two hemispheres.

1Predictability is further explored throughout this chapter, with more formal discussions given in Sections 2
and 6.
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environments will also be discussed in Section 4, with a special emphasis on ensemble tech-
niques used so ubiquitously today covered in Section 5. Section 6 reviews how lessons learned
from past improvements in weather forecasting may inform S2S efforts to expand the practical
limits of predictability and to better exploit forecast skill in the extended range. In particular,we
distinguish between predictability as conventionally defined related to the spatial and temporal
phase of individual weather events (traceable predictability), versus predictability of the fre-
quency of such events conditioned on larger-scale (and hence traceable for longer time periods)
regimes (climatic predictability).

2 THE BASICS OF NUMERICAL WEATHER PREDICTION

The weather that we experience every day depends on atmospheric processes. The atmo-
sphere, of course, is not isolated from, but rather influenced by, its surroundings. Solar inso-
lation, varying primarily on an annual basis, is one of the primary factors driving the general
circulation of the atmosphere. Many other slowly varying external factors such as ocean and
land surface processes impart an additional level of predictability through their coupling to
the atmosphere, which is particularly noticeable on the S2S timescales. Unless noted other-
wise, by predictability, we refer to current or future scientifically based capacities to skillfully
predict the evolution of the atmosphere or its surrounding spheres. Before delving into fore-
casting the state of coupled systems, however, first we turn our focus to the atmosphere itself.
As we will see, some general lessons learned about the predictability of the atmosphere
carryover to the more complex coupled ocean, ice, land, and atmosphere systems.

2.1 The Atmosphere as a Dynamical System

Atmospheric processes have been the subject of intense scientific studies. A well-
established and critical characteristic of the atmosphere is that its time evolution follows spe-
cific rules, and therefore it behaves like a dynamical system. Onmacroscales, the evolution of
the atmosphere is also deterministic, governed by specific physical laws. Importantly, if we
know the state of the atmosphere at one point in time, with the use of these natural laws we
can predict its state at future times as well. The deterministic nature of the atmosphere (e.g.,
Richardson, 1922) thus provides the basis for its prediction, which since the 1970s has been
done mostly by computers. Numerical weather prediction (NWP), as the process is referred to
today, will be discussed further later in this chapter.

2.2 Predictability

The behavior of periodic or quasi-periodic deterministic systems such as the solar system
can be well predicted for long periods of time relative to the system’s characteristic timescale
(e.g., a solar year). Under some circumstances, the behavior of periodic or quasi-periodic de-
terministic systems, however, becomes irregular. This is due to the emergence of instabilities.
Forces that previously could balance each other well in a stable fashion become imbalanced,
giving rise to a new, dynamically evolving behavior. Interestingly, the atmosphere appears to
behave like that: at high levels of viscosity, its laboratory and numerical models follow
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regular, periodic, and hence highly predictable behavior that turns aperiodic and much less
predictable when viscosity is lowered below a certain level (see, e.g., Ghil et al., 2010 and ref-
erences therein).

Deterministic dynamical systems with at least one unstable relationship or instability are
called chaotic systems. A pendulum suspended via an elastic band (e.g., bungee-jumping) or
spring (e.g., Lynch, 2002) is a simple example of a system with aperiodic motions where the
centrifugal and gravitational forces temporarily overtake the force of suspension until the
spring or band is sufficiently stretched sowith its reduced elasticity it can counteract the other
two forces. Elasticity in this example is a nonlinear function of the length of a spring or band.
Temporally unstable developments in finite size chaotic systems are kept in check by such
nonlinear interactions.

If both the governing laws and state of a deterministic system at an instant (such as the
atmosphere)2 are exactly known, the future states, even if the system is chaotic, can be
predicted perfectly in perpetuity. The governing laws of real-life systems, of course, are
not exactly known. And although the error variance in analysis fields can be estimated,
the actual state of natural systems is not known either, due to observational uncertainties.
In practice, we can forecast only with imperfect numerical models, from imperfect initial con-
ditions. Errors from the initial condition will amplify in such forecasts due to the instabilities
in the atmospheric system, and get convoluted with errors from the use of imperfect models.

Because the true states of natural systems are never known, the actual error patterns in the
analysis fields are not known either. The evolution of hypothetical forecast errors, neverthe-
less, can be explored by studying the evolution of various perturbations to the state of a
system. Linear perturbation models and their inverse or adjoint versions are derived by
the linearization of the governing equations of a dynamical system (e.g., Errico, 1997). Such
models can explore the evolution of infinitesimally small initial perturbations. Linear pertur-
bation studies reveal the innate nature of instabilities of chaotic systems. Without the
nonlinear interactions present in the full systems, linear perturbations associated with system
instabilities have an exponential, unlimited growth (e.g., Lorenz, 1963; see Fig. 2) that is
controlled by a single speed or growth parameter S:

v tð Þ¼ eSt (1)

where v(t) is perturbation or error variance at time t. As mentioned earlier, chaotic systems
have at least one such instability. Interestingly, in complex dynamical systems, almost any
error pattern has a finite projection in all directions in the multidimensional phase space
of the system. This includes unstable directions as well. No matter how small, almost any er-
ror pattern will project onto instabilities, eventually leading to a complete loss of predictabil-
ity in chaotic systems.

The exponential growth of linear perturbations clearly indicates that chaotic systems like
the atmosphere have only finite predictability. The nature and time after which predictability
is lost in realistic systems, however, can be assessed only through the consideration of
nonlinear interactions. While nonlinear perturbations are less amenable to theoretical

2An estimate of the instantaneous state of the atmosphere, used as an initial condition for NWP forecasting, is
called an analysis.
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inquiries, they can be studied by comparing numerical forecasts made with the same model
butwith slightly different initial conditions (e.g., Yuan et al., 2018). Estimates of error variance
between past forecasts and reality, the latter represented by the corresponding verifying anal-
ysis fields, also can be used to assess the statistics of error behavior.

Such studies reveal that nonlinear interactions limit the growth of otherwise exponentially
amplifying perturbations and errors. Interestingly, in chaotic dynamical systems, the com-
plex, nonlinearly saturating behavior of the initially exponentially growing error variance
(v) in time (t) can be well characterized by the following simple and general relationship
(Lorenz, 1982):

v tð Þ¼
R

1 + e$St
(2)

Notably, the logistic error growth shown in Eq. (2) and displayed in Fig. 3 requires only one
additional parameter beyond the speed parameter S that reflects the intensity of the under-
lying instabilities in linear error growth in Eq. (1). This new parameter is R, the total range or
the level of variance at which error growth saturates at long lead times, as all predictability is
lost. Note that R, as one of its basic global characteristics, reflects the overall size of the
attractor.3

2.3 Scale-Dependent Behavior

Atmospheric motions can be documented using different basis functions or phase space
coordinate systems. The state of the variables can be described, for example, at selected points
in space (i.e., grid depiction), or in special combinations of the gridded variables, such as

FIG. 2 The exponential growth of linearly evolv-
ing perturbation or error variance associated with
instabilities in chaotic systems (with arbitrary
units).

3The term attractor here refers to the collection of all time trajectories that the system can ever visit naturally.
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empirical orthogonal functions (EOFs; e.g., Lorenz, 1956), or a coordinate system based on a
Fourier decomposition of waves according to their geographical scale (e.g., Orszag, 1969).
Using the scale decomposition approach, for example, Rossby (1939) showed that the prop-
agation of atmospheric and ocean features, since called Rossby waves, are dynamically depen-
dent on their scale: smaller waves, in general, travel faster.

It turns out that the intensity of instabilities, and hence the speed or rate of error growth (S),
also depend on the scale of the motions. In fact, both S and the range (R) parameters in Eq. (2)
are a strong function of the spatiotemporal scale of features with which they are associated.
We first note that weather is manifested in spatiotemporally coherent features. It follows that
the spatial and temporal scales of atmospheric phenomena are connected. Smaller-scale
(on the order of hundreds of meters) cumulus clouds, for example, develop as perturbations
upon the prevailing environment much faster (in tens of minutes) than large-scale (hundreds
of kilometers) extratropical cyclones that evolve over several days. For smaller systems,
this results in much faster nonlinear perturbation growth (i.e., larger S) that, simply due to
their size, saturates at a low energy level (smaller R).

The same instabilities that force the development of features in the flow are also respon-
sible for the emergence of errors that result in modified, more or less intense, or lack of
features. Therefore, faster perturbation growth corresponds with faster error growth, as well
as a faster loss in predictability for smaller-scale features. A simple measure of forecast or
predictive skill is the correlation between forecast and verifying analysis anomalies taken
from the timemean or climatological conditions. An anomaly correlation (AC) or pattern cor-
relation (see, e.g., AMS, 2000) of 1 corresponds to forecasts that perfectly capture the analyzed
variability of weather, while zero indicates no skill at all relative to climatological informa-
tion. As seen in Fig. 4, while features with total wave number 10 (approximately 3000 km hor-
izontal scale, such as a large-scale extratropical cyclone) can be predictedwith a useful level of
skill (i.e., above 0.6 AC) out to 6 days ahead, smaller-scale features (total wave number 60,
about 500 km, e.g., convective clouds organized into mesoscale convective systems) can be
skillfully predicted only 1 day in advance. The predictability of individual clouds (not shown
in Fig. 4) is even shorter.

AC measures skill in terms of how well forecast and verifying analysis patterns are
aligned; therefore, it is is insensitive to the amplitude of errors. Analysis and forecast error

FIG. 3 Logistic growth of nonlinearly
evolving normalized perturbation or error var-
iance (R ¼ 1, with arbitrary time units) associ-
ated with instabilities in chaotic systems. Note
the similarity in the initial phase of error
growth to exponential growth, as displayed
in Fig. 2.
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variance,4 on the other hand, measures the amplitude of errors at each grid point. As the fore-
cast features become uncorrelated, forecast error variance saturates at an R value twice the
level of climatological variance for the scales in question (e.g., Peña and Toth, 2014). As seen
in Fig. 4, predictability is lost faster on smaller scales. Fig. 5 offers a quantitative assessment of
the predictability of the remaining NWP forecasts with progressively longer lead time as a
function of total wave number. As noted earlier, forecasts for smaller-scale features (charac-
terized with larger wave numbers) have a smaller climatological variance, and therefore a
lower saturation value R (see the heavy solid line on the right side of Fig. 5), corresponding
at each scale to the sum of the climatological variance for the model representing nature, and
another model used to produce forecasts. The dashed and lighter solid curves in Fig. 5
stand for the error variance in the initial (analysis) and 1–14 day forecast fields, respectively;
for synoptic and smaller scales (wave number > 8),5 the difference between these and the
heavy solid curve can be interpreted as the information or predictability remaining in the
NWP fields.
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FIG. 4 The AC between Canadian Meteorological Center/Meteorological Service of Canada global 500-hPa fore-
cast anomalies, valid for days 1 (right) through 6 (left), and the verifying analysis anomalies, as a function of total
wave number (from the largest scales on the globe to 200 km at n ¼ 200), for January 2002. Adapted from Fig. 6 of
Boer, G.J., 2003. Predictability as a function of scale. Atmos. Ocean, 41 (3), 203–215.

4After Peña and Toth (2014), analysis and forecast error is interpreted here as the difference between reality
interpolated to the NWP grid and the analysis or forecast fields.
5Note that due to the reference data used by Priv!e and Errico (2015) to define anomalies, the thick line in Fig. 5
does not represent an accurate estimate of climatological random error variance for the largest scales.
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As we move from smaller to larger scales (from right to left in Fig. 5), the analysis error
variance curve departs from the random error curve around total wave number 200 about
150 km), indicating that in this OSSE experiment, the analysis retains information about sim-
ulated reality down to those scales. Forecasts after 2 days, however, already lose information
and predictability on scales finer than wave number 100 (about 300 km), and 4 or 7 days into
the forecast, predictability is lost on scales finer than 750 or 1500 km (wave numbers 40 and
20), respectively. As we reach a lead time of 14 days (the shorter end of the S2S time range),
only a relatively small amount of information remains on planetary scales greater than
5000 km. Discernable differences between the top thin lines indicate that in this OSSE, some
predictability still may be left on the largest scales out to 14 days lead time, even though na-
ture was simulated without full coupling with slowly changing oceanic or ice conditions. If
we apply the generic logistic relationship for the description of error growth on progressively
larger scales, S monotonically decreases, while R increases up to, and attains its maximum
value at, around about 4000 km (wave number 8).

In summary, while determinism makes predictions possible, chaos, in the presence of ini-
tial errors andmodel imperfections, places limits on the extent of predictability. In particular,
with the current level of analysis errors, predictive information on individual events beyond
14 days is restricted to slowly evolving, planetary-scale waves. The position of finer-scale de-
tails is predictable only on shorter timescales. The implications of these limitations on S2S
forecasting will be further discussed in Section 6.

2.4 Coupled Systems

So far, we have discussed predictability and forecasting in the atmosphere with prescribed
boundary conditions, uncoupled from its surrounding spheres. In reality, the atmosphere is
in two-way interactions with the ocean, land, and cryosphere. Such two-way coupling with
these other systems make the atmospheric circulation more complex. However, the higher
level of complexity, due to the rather long “memory” of some high-energy oceanic, ice,
and land surface processes, may actually extend the predictability of weather or its statistics
in the coupled system. In fact, many of the processes in the coupled system act on a slow
timescale compared to those in the atmosphere. A significant portion of the energy of the

FIG. 5 A 356-hPa rotational wind analysis (dashed line), 1–14-day lead time (solid line, from low to high), and ran-
dom forecast (R, heavy solid line) error variance as a function of the total wave number for a July–August observing
system simulation experiment (OSSE, adapted from Fig. 1 of Priv!e and Errico, 2015), expressed as anomalies from the
respective 2-month means (nature run, analysis, or forecast).
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coupled system, for example, is locked into annual or decadal scale variations in deep ocean
circulation, deep soil moisture and temperature, or sea and land ice fluctuations. When the
atmosphere is coupled to these systems, its energy spectrum also shifts to slower scales, giv-
ing rise to potential predictability in the atmospheric portion of the full coupled system.6

In particular, the coupled ocean-atmosphere system enables the emergence, or enhances
the influence of, some slower-evolving instabilities. These in turn led to the formation of
longer-lived phenomena such as the El Niño-Southern Oscillation (ENSO). As is the case with
the uncoupled atmosphere, the dynamics of the coupled system both supports (due to deter-
minism) and limits (due to chaotic behavior) the predictability of the entire coupled
ocean-land-ice-atmosphere system (and, within it, the atmospheric portion of the system).
Many of these phenomena, arising from coupling with slower-evolving processes in sur-
rounding spheres and associatedwith slower-growing instabilities and errors, will be studied
in more detail in upcoming chapters.

3 THE EVOLUTION OF NWP TECHNIQUES

Information about future weather originates from observations of its current state. Obser-
vations are made either in situ or remotely, from space-, air-, or ground-based platforms. Ob-
serving systems typically provide sparse (in space and time) and incomplete (in terms of
variables) coverage, as well as inaccurate data about the natural system. To mitigate this sit-
uation, data assimilation (DA)must statistically spread information about the state of the sys-
tem from observed to unobserved sites, times, and variables. Temporal extrapolation of
information from past observations is a critical part of the DA process because the first guess
for each analysis is provided by a short-range NWP forecast from the previous analysis. In a
continual DA-forecast cycle, the DA step statistically combines information from the latest
observations with the first guess forecast.

Analyses contain both random (originating from the observations, first guess forecast, and
statistical procedures) and growing (originating from the first guess forecast) errors. Growing
errors, by definition, amplify in NWP forecasts of chaotic systems, while random errors typ-
ically decay. As Toth and Kalnay (1993, 1997) noted, DA-forecast cycles also act as a retaining
filter or amplifier of the growing type of error. A major emphasis in NWP development is the
reduction of errors in the analysis, especially the growing errors that by definition, influence
most the quality of forecasts. Atmospheric analyses are discussed more in Chapter 13.

NWP models are used to approximate the temporal evolution of nature in spatiotempo-
rally discretized fashion on a finite grid. At the core of NWPmodels are prognostic equations
that describe the relationship between the state of the system at two consecutive time steps.
Forecasts are produced by the temporal integration of such equations. Natural processes are
truncated in space, time, and in the range of represented physical processes. The effect on the
resolved scales of some physical processes happening on finer scales unresolved by the

6Note that the predictability of the atmosphere can be realistically assessed only in a coupled ocean-land-ice-
atmosphere system. If the boundary conditions of the atmosphere are prescribed, the time range of skillful
forecasts for the atmosphere will be distinctly different (e.g., Goswami and Shukla, 1991).
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models are statistically parameterized (i.e., physical parameterization of convection), while
others are ignored (e.g., electrical processes). NWP models are thus imperfect.

Beyond the chaotically amplifying initial errors mentioned previously, forecasts are also
affected by errors related to the use of such imperfect models. A smaller part of random
(e.g., truncation-related) errors introduced at each time step projects onto growing directions
and will amplify as initial errors do. Other model-related errors are due to the model’s attrac-
tor being displaced from that of nature and manifest as a systematic drift of forecasts started
with observed initial conditions, evolving until the model reaches a state close to its attractor.

How have today’s NWP systems developed? Next, we offer a brief overview from 1950
onward. For more information, the readers are referred to Lynch (2006, 2008), Deutsche
Meteorologische Gesellshaft e.V. (2000), and the papers listed in this chapter.

3.1 Computational Infrastructure

The concept of and scientific underpinning for NWP were created in the 1920s
(Richardson, 1922). Due to the large amount of calculations involved, its practical implemen-
tation, however, had to wait for the invention of electronic computers in the 1950s. Compu-
tational power has continuously increased since, allowing data processing, DA, and forecast
applications to become higher in spatial and temporal resolution and ever more sophisti-
cated. Until the 1990s, this increase manifested in ever-faster processing speed, while the
number of processors for parallel computing has increased dramatically since.

3.2 Observing Systems

Both surface and upper-air observations (Fig. 6) are indispensable for the initialization of
three-dimensional (3D) NWP models. Surface in situ observing networks have been devel-
oped since the late 1800s, while the upper-air network was developed during World War
ll and in the 1950s and 1960s, partly in support of NWP forecasting. A key development that
made NWP possible was the decision to share observations. Thanks to the work of theWorld
Meteorological Organization (WMO, https://www.wmo.int/pages/index_en.html), obser-
vation standards were defined, and agreements were put in place to collect and exchange ob-
servational data in a timely manner. This led to a further expansion of the global network of
observations that allowedNWP centers to generate more accurate estimates of the initial state
of the atmosphere, which is required to generate operational weather predictions.

In particular, it is worth discussing two key projects. The first is the WorldWeather Watch
(WWW, http://www.wmo.int/pages/prog/www/index_en.html), established in 1963.
Since then, the WWW has been one of the WMO’s core programs, combining observing sys-
tems, telecommunication facilities, and data-processing and forecasting centers. Today, the
WWW, operated by WMO member-states, makes meteorological and related environmental
information freely available for the provision of efficient services in all countries. The second
project, started in 1967, was the Global Atmospheric Research Program (GARP). GARP,
which ran until 1982, helped advance research in the field of weather prediction, including
the organization and coordination of several important field experiments, such as the GARP
Atlantic Tropical Experiment in 1974 and the Alpine Experiment (ALPEX) in 1982. One key
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component of GARP was the First GARP Global Experiment (FGGE), which took place in
1979. FGGE contributed to the extension of the observations of the WWW. These field exper-
iments contributed to the availability of a larger number of, and more accurate, observations,
allowing scientists to better test and validate their models.

No credible cost-benefit analysis exists as to the optimal configuration of existing or pos-
sibly planned observing systems, so observing system-related developments have been
somewhat ad hoc. Although there may be other competitive solutions, governments of devel-
oped nations made strategic investments in the design and implementation of satellite
platforms. An important milestone of the 1960s was the launch of TIROS-1 (TIROS stands
for “Television Infrared Observation Satellite”; see https://science.nasa.gov/missions/
tiros), the first weather satellite launched by the National Aeronautics and Space Administra-
tion (NASA). TIROS paved the way for the Nimbus program, whose technology and findings
are the heritage of most of the Earth-observing satellites that NASA and the National Oceanic
and Atmospheric Administration (NOAA) have launched since then. As seen in Fig. 7, the
volume of observations in general (including surface, upper-air, and satellite-basedmeasure-
ments) has increased dramatically since the start of NWP in the 1950s. Of particular note is the
superexponential growth of satellite-based, mostly radiance observations since the 1980s. To-
day, about 95% of observations come from instruments onboard satellites. Many of these ob-
servations, just as with other remotely sensed data such as lidar and radar observations,
contain nonnegligible systematic errors and are indirect (i.e., not of the NWPmodel variables
themselves, but only related to them). Their assimilation, therefore, poses special challenges.
The relative role of the observing versus the DA-modeling systems in NWP will be revisited
in Section 3.5.

FIG. 6 Schematic of the most common atmospheric in situ and remote observing systems. From https://www.ecmwf.
int/en/research/data-assimilation/observations.
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3.3 Data Assimilation

Perhaps themost critical element in DA is the spatiotemporal propagation of observational
information from observations to unobserved analyzed variables. Initial attempts at DA
discarded information in all previously taken observations and used persistence or climatol-
ogy as background fields to fill the large gaps in observational coverage (Bergthorsson and
Doos, 1955). Only in the 1960s were NWP forecasts introduced as first guesses in the context
of DA-forecast cycles that are still used today. This change led to major forecast improve-
ments, as well as to the birth of modern data assimilation.

For the spatial propagation of information, at each observation site, Gaussian correlation
models were used separately in schemes called “optimal interpolation” (Gandin, 1963).
Relatively simple relationships served to ensure dynamical balance between the model
variables (e.g., normal mode initialization; Errico and Rasch, 1988). A big step forward
was the introduction of 3D variational DA (3DVAR). These methods solve a global minimi-
zation problem using covariance information across space and variables, derived from a cli-
matology of differences between similar forecast states (e.g., Parrish and Derber, 1992).

It was not until the introduction of four-dimensional (4D) variational DA (4DVAR) that
observational informationwas propagated across variables, space, and time (within an assim-
ilation window) in a flow-dependent manner (e.g., Courtier et al., 1994). This revolutionized
the main technique of DA that has not been surpassed since. A plethora of mostly sequential,
ensemble-based DA methods have also been developed, but their performance lags that of
4DVAR (see, e.g., Bonavita et al., 2017 and the references therein). Although the basic 4DVAR
methods have not been surpassed, various improvements, including ensemble-based

FIG. 7 Schematic illustration of the increasing number of daily surface (green), upper-air (orange), and satellite
(burgundy) observations available for use in ECMWF reanalysis projects (shown on a logarithmic scale), as a function
of time. For reference, in 2015, 44 Mof a total of 600 Mobservations per daywere assimilated.Adapted fromDee, D., 2009.
Representation of climate signals in reanalysis. In: Presentation at the Fifth International Symposium on Data Assimilation,
Melbourne, Australia, 5–9 October 2009. See at: https://www.dropbox.com/s/ifge2r5wimiyc3h/Dee_2009_Melbourne.pdf?dl¼0.
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methods to propagate covariance information across assimilation windows, have been devel-
oped over the past decade.

A key attribute to the variational approach is that it allows the assimilation of often
remotely taken observations of nonmodel variables such as radiation or radar reflectivity.
In such cases, observational models (called observation operators) connecting the observed
and analyzed variables become part of the DA scheme. In this era of proliferating satellite-
based radiance and other remotely sensed indirect observations, this feature has invaluable
benefits.

3.4 Modeling

Beyond DA enhancements, model development is another key area for improving NWP
forecast performance. In 1950, history was made at the University of Pennsylvania by the
creation of the first numerical weather prediction using a simplified set of equations on
the Electronic Numerical Integrator and Computer (ENIAC). In this effort, a barotropic vor-
ticity model developed at the Massachusetts Institute of Technology (MIT; Charney et al.,
1950) was used. Follow-on research in the United States led in 1955 to the start of routine
numerical weather prediction under the Joint Numerical Weather Prediction Unit
(JNWPU), a joint project between the U.S. Air Force, Navy, and Weather Bureau.

Across theAtlantic, Carl-Gustaf Rossby’s group at the SwedishMeteorological andHydro-
logical Institute used a similar model to produce the first European operational forecast in
1954 (Persson, 2005; Harper et al., 2007). As computers advanced, more complex models ca-
pable of simulating a wider range of physical processes became established. Phillips (1956)
developed the first primitive-equation numerical model capable of realistically depicting
the main features of the troposphere. As a prelude to S2S, the first coupled ocean-atmosphere
general circulation model was developed at the NOAA’s Geophysical Fluid Dynamics
Laboratory (GFDL, https://www.gfdl.noaa.gov/climate-modeling/) in 1960. As scientists
developed better models and computers continued to increase in power, more nations started
producing operational weather forecasts. In 1966, Germany and the United States began pro-
ducing operational forecasts based on primitive-equation models. The United Kingdom and
Australia followed suit in 1972 and 1977, respectively.

In 1967, a working group of the European Commission suggested that stronger collabora-
tion in natural sciences, and more specifically in weather forecasting, could advance the sci-
ence and technology in this area. Eventually, this led to the establishment in 1975 of the
European Centre for Medium-Range Weather Forecasts (ECMWF, https://www.ecmwf.
int/). ECMWF joined the ranks of the already established national meteorological services
of the United States, Germany, United Kingdom, Australia, and many other countries, with
the aim of tackling themedium-range problem, to assesswhether it would be possible to issue
skillful forecasts 5–10 days ahead.

Because a simple decrease in grid spacing (i.e., increase in spatial resolution) directly re-
duces truncation errors, it is not surprising that it leads to the reduction of both analysis and
forecast error variance. Changes in horizontal resolution, however, require at least a cubic
increase in computer power because a proportional reduction in the length of time steps is
also required. Fig. 8 shows, for example, that a single forecast with a 64-km resolution model
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implemented at ECMWF in 1991 used a sustained computer power of about 0.001 teraflops
(TF). This model configuration had about 3million grid points. In contrast, the 2017 version of
ECMWF’s high-resolution global model has about 300 million grid points, spaced 9 km apart,
and uses a sustained computer power of about 300 TF.

Numerics such as the rather technical choices for time-step and interpolation schemes, hor-
izontal and vertical grids or other representations, and model variables is aimed at minimiz-
ing noise and maximizing the conservation of selected quantities in NWP forecasts.
Continued experimentation so far yielded no clear or generally favorable solutions in
this area.

Beyond reducing spatial/temporal truncation-related errors, the introduction of new or
enhanced physical processes or related parameterization packages is another source of sig-
nificant gains in the quality of NWP performance. The first numerical models in the 1950s
and 1960s had no or very simple physics, while today’s models represent an increasingly
growing set of interacting physical processes (see Fig. 9).

Coupling an atmospheric model with models of surrounding spheres is another critical
path for improved forecast performance. Two-way coupled Earth system modeling can be
especially important for the S2S range, as slowly varying processes carry relatively large en-
ergy in the ocean, cryosphere, and land surface. Fig. 10 shows the composition of a state-of-
the-art Earth system model used for weather and climate studies.

3.5 Improvements in Forecast Performance

Forecast improvements like those shown in Fig. 1 earlier in this chapter are due to the com-
bined effects from all the main components of NWP highlighted here: (1) more and higher-

FIG. 8 Time evolution of the computer power installed at ECMWF, expressed in terms of sustained TF (i.e., 1012

floating point operations per second) on a logarithmic scale from 1979 to the present.
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quality observations, (2) improved DAmethods, (3) more realistic numerical models, and (4)
more computer power that facilitates many of the advances seen in the other areas. We must
note that either by design or necessity, NWP centers often introduce changes inmore than one
area at the same time, which makes attribution more difficult.

Fig. 11 may shed some light on the relative roles of changes in the observing versus
DA-modeling systems on forecast skill. The 15-year period of 1984–98 saw a dramatic in-
crease in the skill of Northern Hemisphere operational forecasts. This period also witnessed
a dramatic rise in the availability of satellite observations (cf. Fig. 7). Because the development
and maintenance of satellite-based observing systems are arguably the most expensive com-
ponents of the NWP observing—data assimilation—modeling infrastructure, a naturally aris-
ing question is whether the approximately 17-percentage-point gain in operational Northern
Hemisphere anomaly correlation scores (shown by the black dashed line in Fig. 11) is primar-
ily due to the costly investments in satellite observing systems, or whether it reflects more the
combined effect of less expensive developments in DA and modeling science and computa-
tional technology.

Changes in the quality of reforecasts (solid black line in Fig. 11), beyond any natural var-
iability in atmospheric predictability, are only due to observing system changes because the
reanalyses and reforecasts weremadewith a frozen, 1995National Centers for Environmental
Prediction (NCEP) DA-modeling system (Kistler et al., 2001). Remarkably, the Northern
Hemisphere reforecasts exhibit no (or only minimal, if any) trend over the 1984–98 period,
indicating that DA-modeling improvements dominate the gain in skill, probably at a small

FIG. 9 Interactions (gray) between five physical parameterization schemes (black) of the Weather Research and
Forecasting (WRF) model. Courtesy of the Developmental Testbed Center (DTC).
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FIG. 10 Schematic diagram of the main models (yellow), their overall mediators (coral), and coupling connections
(lines with arrows) for the Earth system model of the U.S. Next-Generation Global Prediction System (NGGPS). The
dynamics (FV3), physics driver, and physics components of the atmospheric model are shown in light and dark green
and blue, respectively. Courtesy of the Global Model Test Bed of the DTC.
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fraction of the cost of concurrent observing system developments. On the other hand, over the
in situ, data-sparse Southern Hemisphere, improvements in DA and modeling techniques in
the operational forecasts (gray dashed line) appear to bring no added gain beyond what the
expansion of the observing network offered in the reforecasts (gray solid line).

Fig. 12 offers further insight into the attribution of skill gains to various changes in DA and
modeling techniques. Fig. 12 shows the time evolution of the skill of operational, high-
resolution forecasts relative to the skill in a reanalysis-reforecast system that was
implemented and “frozen” in 2003 (and never upgraded afterward), thus reflecting 2003
knowledge and technology. Both synoptic-scale (500 hPa geopotential height, 850 hPa tem-
perature, and mean sea-level pressure/MSL), and local weather parameters (2-m tempera-
ture, cloud cover, and the 10-m wind speed) are represented in the graph.

The vertical lines in Fig. 12 indicate dates when NWP upgrades were introduced; the red
lines showwhen resolution also changed. It is important to point out that an increase inmodel
resolution is associated with an increase in the resolution used in data assimilation as well,
typically allowing more observations to be used. Some highlights from the graph include:

FIG. 12 Time evolution of monthly average skill for operational 5-day high-resolution ECMWF Northern Hemi-
sphere extratropics forecasts from 2003 to 2017, relative to reforecasts made with the frozen ERA-Interim
DA-modeling system (Dee et al., 2011). Blue, black, red, orange, green, and cyan lines stand for MSL, 500 hPa geopotential
height, 850 hPa temperature, 2-m temperature, 10-m wind speed, and total cloud cover. Relative skill is defined as the
percentage change of skill in the operational forecasts compared to ERA-Interim reforecasts, both verified against ERA-
Interim analyses. Vertical (red) lines indicate dates when model (resolution) upgrades were introduced.
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• Changes including resolution upgrades (marked 30r1 in 2006, 36r1 in 2010, and 38r2 in
2013) usually bring the largest improvements, but because other model changes are also
included, one cannot attribute the improvements only to resolution.

• Upgrades in the data assimilation (e.g., versions 32r2 in 2007 and 37r2 in 2010) also bring
substantial improvement.

• Some model changes without an increase in resolution (e.g., 36r4 in 2010 and 37r3 in 2011)
can also bring substantial improvement, especially if measured in the variables closely
linked with the specific model upgrades (e.g., the upgraded cloud scheme in version 36r4
substantially improved the skill in the prediction of total cloud cover).

• Every change is carefully selected for implementation counts and can lead to
improvements.

3.6 Weather Versus Climate Prediction

At the beginning, NWP forecasts were made out to only 24 hours of lead time. With im-
proved techniques, operational weather forecasts were extended out to 3, and then 5–10
and 15 days into the future. These forecasts exploited information primarily about the initial
condition of the atmosphere on one hand, and improvements in the modeling of relatively
fast weather processes on the other. Ocean, land, and ice processes, if included, were often
simplified in NWP models. Meanwhile, the climate community’s modeling efforts focused
on the initialization and modeling of the slower ocean, land, and ice components of the
coupled system. The first successful real-time seasonal predictions of the 1997–98 El Niño
event at NCEP (Barnston et al., 1999) gave further impetus for advancing coupled modeling
in both the weather and climate communities. With time, it became evident that improved
initialization and modeling of the fast and slow components of the coupled system are not
exclusive. In fact, both scientific and practical arguments indicated potential gains from a
comprehensive and seamless weather-climate forecasting effort, benefiting both weather
and climate prediction (Toth et al., 2007). The biggest beneficiary of a converged weather-
climate approach, however, has been the intermediary S2S forecasting, where success, with-
out a coupled model initialized well both for the fast atmospheric and slow ocean/land/ice
components, had been elusive.

The integration of weather and climate forecasting, first started in research, soon reached
operations. The full coupling of the earlier atmosphere only models with ocean, sea ice, and
land surface models, as well as the significant extension of the NWP forecasts into the weekly
range, effectively blurred the line between operational NWP and what originally started as
separate monthly or seasonal climate modeling efforts. Today’s ECMWF sub-seasonal sys-
tem, for example, is a seamless extension of its medium-range ensemble, complete with a
coupled land, ocean, and atmosphere model out to 46 days twice a week (Vitart et al.,
2014a). While the trend is clear, the full integration of forecast effort still has not reached
the seasonal time range. For various reasons, including the prevalence of significant biases
in fully coupled models, both research and operations in seasonal prediction use somewhat
different models and procedures from those applied in weather and S2S forecasting.

As for operational seasonal prediction, it started at NWP and climate forecasting centers in
the middle to late 1990s. Since its first implementation, ECMWF has upgraded its seasonal
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ensemble prediction system four times (Molteni et al., 2011). The latest version, system-5
(SEAS5), was implemented into operation in November 2017. This system, typical of state-
of-the-art efforts, uses a coupled ocean, land, sea ice, and atmosphere model, and it produces
forecasts once a month up to 7 months ahead (once a quarter, forecasts are extended up to
13 months). In addition to their weather prediction suites, several national meteorological
centers are running seasonal ensembles out to a year. See Chapter 13 for an overview of
the global ensembles that are operational today.

4 ENHANCEMENT OF PREDICTABLE SIGNALS

As discussed earlier, predictability is quickly lost on the fine scale, and in a few days even
on the moderately large scales. How can we extract a relatively small signal (i.e., the predict-
able component in a forecast), or alternatively, filter out the large amount of uninformative
noise from extended-range weather, S2S, and even longer-range forecasts? Bias-corrected
output from an NWP forecast looks just as realistic at a 20-day lead time as at shorter (say,
3-day) lead time. Putting the unlabeled forecast maps side by side, we would not be able
to tell which was which. However, we know that the skill of a 20-day forecast is very low
at best, whereas the skill of a 3-day forecast is usually high enough for many users to take
specific actions. This indeed poses a real challenge for both lay and professional users of
weather forecasts, as the possible extraction of any useful information from longer-range
forecasts is nontrivial. The presence of spatiotemporally coherent features in the atmosphere,
however, offers different ways for the removal of higher-frequency forecast variability that, at
a given lead time, may have lost predictability.

4.1 Spatiotemporal Aggregation

Because neither the exact timing nor the location of fine-scale weather features is predict-
able beyond very short lead times, as an alternative to using the actual prediction valid at a
point in time and space, it is a common practice to consider forecast values collected from or
aggregated in a spatiotemporal neighborhood of the point of interest (refer to Figs. 4 and 5 for
spatial examples, or Roads (1986) for temporal averaging). This is an inexpensive way of
generating a range of forecast values, so long as the surrounding terrain is reasonably
uniform. One can compute, for example, the spatial and/or temporal mean of forecasts (or
their anomalies from long-term means) as a way of removing the unpredictable noise from
the forecasts. Alternatively, neighboring forecast values can be used for the inexpensive gen-
eration of multiple, a range of, or probabilistic forecasts based on a single NWP prediction
(Atger, 2001).

The spatial size or temporal domain of the averaging can be chosen so that a large part of
the variance associated with unpredictable scales is filtered out, while most of the predictable
signal is retained. Also, 5-, 7- (weekly), 10-, or 30-day (monthly), and district, state, or conti-
nental means are variousways that researchers and operational forecasters have attempted to
extract and present to users the signal from low-skill forecasts.
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It is well understood that due to aliasing effects, box-shaped filters or aggregation areas
(with weights of zero outside the zone of interest) used in simple spatial or temporal averag-
ing will introduce some noise into the forecast (see, e.g., Fig. 15-2 in Smith, 2013). Some of the
aliasing and noise can be mitigated by using filters with different shapes (e.g., with Gaussian-
shaped weights), and by repositioning the filter over each element of interest (i.e., shifting
filters or running averages over grid points or time instances).

By combining information from adjacent areas or times, spatiotemporal averaging intro-
duces some errors in a forecast for the selected point of interest. Also, filtering parameters
must be chosen to correspond to the actual, lead-time-dependent level of forecast skill. To
avoid underfiltering or overfiltering, one must carefully choose filtering parameters to match
the actual level of skill.

4.2 Ensemble Averaging

Ensemble forecasting offers a dynamical solution to the abovementioned problems with
spatiotemporal averaging. The concept of ensemble forecasting, as discussed further in
Section 5 later in this chapter, is rather simple. The analysis of the state of the atmosphere
is intentionally degraded by introducing multiple realizations of perturbations that are all
within the bounds of the estimated uncertainty in the initial state. In addition to the control
forecast from the best analysis, NWP forecasts aremade from all perturbed states. The ensem-
ble mean of such forecasts, albeit at very significant computational cost [depending on the
number of ensemble members, with O(10) being more costly], offers a flow-dependent filter
that, so long as the perturbations are consistent with error statistics, reflects the actual level of
forecast skill. An ensemble also offers alternative forecast scenarios valid for each point in
time and space, without neighborhood aggregation.

4.3 Removal of Systematic Errors

Numerical models represent, in an approximate way, the dynamics and the physical pro-
cesses of the real atmosphere. Natural processes are truncated spatially to the model grid
space, temporally by the model time steps, and also by the parameterization of some (and
ignorance of other) physical processes. Forecast errors thus accumulate due not only to cha-
otic amplification, but also differences between the dynamics of reality and ourmodels. Some
of these differences result in small random errors imparted at each time step of themodel into
the forecast state, after which it undergoes chaotic amplification just as errors in the initial
condition do. Other model-related errors, however, are systematic in nature and manifest
as a drift in model forecasts initialized from analyzed conditions. The systematic drift from
observed to model-preferred conditions also hinders the use of weather forecasts. A host of
statistical methods have been proposed to mitigate this problem. Depending on the level of
sophistication and the available of required pairs of forecast-verifying analysis sample data,
systematic errors can be estimated over the entire climatological attractor (i.e., by comparing
the time means or climatologies of unconditional analysis versus different lead time fore-
casts), or over different regimes (i.e., via comparing conditional climate means).
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Due to the various model truncations mentioned here, many user-relevant atmospheric
variables are not part of NWP models. This poses yet another challenge for the use of
NWP forecasts. Separate statistical or physical relationships need to be developed between
the model prognostic variables and the desired user variables (often on a finer spatial scale
than themodel’s grid) tomitigate the situation. For further discussion of the postprocessing of
NWP forecasts, there is a plethora of related literature (see, e.g., Li et al., 2017), and also see
Chapter 15 of this volume.

5 ENSEMBLE TECHNIQUES: BRIEF INTRODUCTION

In the past 25 years, NWP has seen a shift from a deterministic approach, based on single
numerical integrations, to a probabilistic one, with ensembles of numerical integrations used
to estimate the probability distribution function of the future state of the atmospheric vari-
ables. This section offers a brief overview of the ensemble approach, which is so ubiquitous
now inNWPpractice. See Chapter 13 formore details on operational and other near-real-time
ensemble forecast systems.

5.1 Background

From the early days of NWP, it was clear that there are some cases when forecast errors
remain small even for longer forecast ranges, and others when even shorter range forecasts
can have large errors. This operational experience was supported by scientific studies
pointing out that due to the chaotic nature of the atmosphere, in the presence of strong insta-
bilities, even small initial errors can grow rapidly and affect forecast quality at shorter ranges.

Yet until the 1990s, the prevailing thinking expressed succinctly by Bengtsson (1991) was
that “[w]eather prediction is a well-defined deterministic problem. Starting from a given ini-
tial state, any future state can be obtained by integrating the classical Navier-Stokes equations
forward in time. Therefore, a weather forecast can, in principle, be calculated in the sameway
as the motion of the planets or the trajectory of a missile.”

However, Bengtsson himself, along with a number of pioneers from the 1950s on (see, e.g.,
Lewis, 2005) recognized that errors from both the observations and the imperfect models
could “contaminate” a forecast. In the 1970s and 1980s, various groups investigated whether
case-dependent variations in the quality of forecasts could be estimated in advance (say,
when a forecast is issued) to seewhether futureweatherwas easier ormore difficult to predict
than average. In other words, scientists searched for an objective method to associate each
forecast with a level of confidence. At the time, various approaches were tested at the major
NWP centers. By the early 1990s, a number of groups converged on the idea of using ensemble
forecasts. Indeed, 1992 saw the implementation of the first operational ensemble prediction
systems at ECMWF and NCEP, following the early work of Lorenz (1975) and others.
This development started a new era in NWP prediction, providing multiple scenarios alter-
native to a single traditional forecast started from the best estimate of the initial state.
The implementations at NCEP and ECMWF were to be followed by many others, first at
the CMC of the Canadian Meteorological Service in 1995, and then elsewhere.
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5.2 Methodology

The main concept behind the ensemble approach is rather simple: generate a set of N
perturbed forecasts, each designed to simulate the effect of possible uncertainties associated
with the unperturbed (or control) forecast. Then use theN perturbed forecasts to estimate the
range of possible outcomes, most probable set of values, and/or the probability that a future
parameter (say, temperature at a point in time and space) will be higher or lower than a
certain value (Fig. 13).

In the 1980s, different techniques were developed and tested for the generation of reliable
and accurate ensembles. One of the approaches tested at the predecessor of the NCEP used
lagged forecasts: forecasts initialized recently (say, every 6 hours in the past 2 days) were con-
sidered as a lagged ensemble (Ebisuzaki and Kalnay, 1991). The results showed reasonable
quality for the medium forecast range, beyond about a week. However, the inclusion of less
skillful, older forecasts degraded ensemble quality for the shorter time ranges. Scientists at
ECMWF (Hollingsworth, 1980) and NCAR (Errico and Baumhefner, 1987; Tribbia and
Baumhefner, 2003) generated ensembles starting all at the same time, but with initial

FIG. 13 Schematic of the ensemble approach to the prediction of the time evolution of a selected weather parameter
(red curve). Until 1992, NWP forecasts were issued using a single model integration (bold blue line) starting from initial
conditionswith the smallest possible error. Due to initial uncertainties andmodel approximations, forecasts of a chaotic
system diverge from reality. The ensemble approach introduces a set of perturbed forecasts (thin blue lines) to estimate a
multitude of possible initial and forecast states that in turn can beused to estimate the associatedprobability distribution
functions (PDF, black curves with yellow shading at initial (left) and a selected forecast time (right).
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conditions perturbed in a random way. This method did not deliver good results either, be-
cause the random perturbations did not lead to sufficient forecast diversity: ensemble mem-
bers remained too similar to provide valuable information on possible future scenarios.

The beginning of the 1990s saw the development and testing of more promising methods
both at ECMWF and at NCEP. There are different ways that ensembles can simulate the initial
condition andmodel-related uncertainties. In the first version of the ECMWF global ensemble
(Molteni et al., 1996), initial uncertainties were simulated using singular vectors (SVs), which
are the perturbations with the fastest growth over a finite time interval (Buizza and Palmer,
1995). SVs remained the only type of initial perturbations used in the ECMWF ensemble until
2008, when perturbations from multiple data assimilation cycles, known as Ensembles of Data
Assimilations (EDAs), were also incorporated in addition to SVs (Buizza et al., 2008). Today,
SVs remain an essential component of the ECMWF ensemble. They provide dynamically rel-
evant information about initial uncertainties that are linked with forecast errors.

In the first version of NCEP’s global ensemble, bred vectors (BVs) were used to simulate
initial uncertainties instead of SVs (Toth and Kalnay, 1993). Perturbations in the BV cycle aim
to emulate errors in the analysis-forecast cycle (see also the discussion in Section 5). The BV
method is based on the notion that due to perturbation dynamics, growing errors have a ten-
dency to accumulate in analysis fields generated by data assimilation (Toth and Kalnay,
1997). Assuming that errors introduced in the assimilation step project in both growing
and decaying perturbation directions, one observes that the growing errors amplify, while
decaying errors diminish in the pursuant forecast step. Consecutive applications of the
analysis-forecast cycle amount to a natural selection (or breeding) of fast-growing errors.
The result, confirmed by OSSE studies (e.g., Errico and Prive, 2014), is that growing pertur-
bations dominate analysis error variance compared to a prior expectation of random (neutral)
errors.

The ensemble introduced operationally at the Meteorological Service of Canada (MSC) in
1995 adopted a Monte Carlo approach, designed to include as many sources of error as pos-
sible. They simulated initial uncertainties due to both observational errors and data assimi-
lation assumptions, aswell as, for the first time,model uncertainties (Houtekamer et al., 1996).
For the estimation and representation of uncertainties in initial conditions, MSC, similar to
Evensen (1994), designed a new data assimilation scheme, a forerunner of a large number
of ensemble-based data assimilation plans. Following the Canadian example, a stochastic
model perturbation scheme designed to simulate model uncertainties was introduced in
the ECMWF ensemble (Buizza et al., 1999).

After the early implementations at NCEP, ECMWF, andMSC, most other operational cen-
ters have also introduced ensemble techniques on the global and regional scales, often includ-
ing schemes to simulate model uncertainties. See Chapter 13 (Ensemble generation: the
TIGGE and S2S ensembles) in this volume for a description of the main characteristics of
global ensemble forecast systems operational in 2017. These implementations amounted to
a paradigm shift in operational NWP from a deterministic approach, based on a single fore-
cast, to a probabilistic one, in which ensembles are used to estimate the probability density
function of initial and forecast states.
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5.3 Use of Ensembles

Today, it is generally accepted that forecasts must include estimates of uncertainty or con-
fidence that on any day allow forecasters to assess how predictable the future is. Short- and
medium-range forecasts, monthly and seasonal forecasts, and even decadal forecasts and
climate projections are based on ensembles, providing not only the most likely scenario,
but also the uncertainty associated with it. Ensembles of short-range forecasts or data
assimilation cycles are also used to estimate the uncertainty in the initial state (analysis).

Probabilistic forecasts, where the probability of the occurrence of a predefined event is
predicted, are among the most common ensemble-based products. As ensembles are built
around and use the same techniques as other NWP forecasts, it is not surprising that their
performance follows similar patterns. Analogous to Fig. 1 (which shows the time evolution
of the skill of the ECMWF single, high-resolution forecasts of the 500 hPa geopotential height
from 1979 to the present), Fig. 14 shows the time evolution of ensemble-based probabilistic
forecasts of the 500 hPa geopotential height over the Northern Hemisphere, from 1995 to
the present. Both graphs reveal a steady improvement of forecast accuracy over the years,
for example, indicating that a 7-day forecast is as good today as a 5-day forecast was
20 years ago.

Because forecast skill decreases and predictable signals are gradually lost with increasing
lead time, a probabilistic approach is paramount. Probabilistic forecasts can be generated sta-
tistically based on an ensemble, or even a single unperturbed forecast (e.g., Glahn and Lowry,
1972). Many users, however, are affected by a multitude of weather parameters spread across
lead time, space, andvariables.Given the sheernumber of (and sometimesunforeseen typeof )

FIG. 14 Time evolution of monthly-average skill using the continuous rank probability skill score (CRPSS)
of 3- (blue), 5- (red), and 7-day (green) ECMWF probabilistic predictions of the 500-hPa geopotential height over
the Northern Hemisphere, measured in comparison with climatologically based probabilistic information.
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user applications, the pregeneration of single forecast- or ensemble-based joint or aggregate
probabilistic products using statistical calibrationmethods is simply not plausible. A properly
formulated and statistically calibrated ensemble, however, supports innovative applications,
including the use of a range of plausible spatiotemporal scenarios, given the initial condition
and its uncertainty.

Each realistic ensemble scenario can be fed through user applications such as a model of
energy demand from a customer base as a function of various weather and other parameters.
Assuming equiprobable sampling by the ensemble members, a rational decision can be made
as to optimal, weather forecast–dependent staging for the production and distribution of
energy.

Admittedly, many users may lack the sophistication required for the construction of such
applicationmodels. Nevertheless, an approach like this may offer a quantitative and compre-
hensive way of capturing case dependent predictability so critical to real-life weather-
dependent activities. Ensemble forecasts can also help to prepare for threatening high-impact
events in geospheres coupled with the atmosphere that are triggered by weather, where
possibly highly nonlinear relationships may limit the use of other, statistically oriented
postprocessing methods.

6 EXPANDING THE FORECAST SKILL HORIZON

Recall from the earlier discussion that the term weather refers to the time sequence of atmo-
spheric events. As we have seen in Figs. 4 and 5, our ability to pinpoint smaller-scale features
in time and space rapidly diminishes as lead time increases. Consequently, at longer lead
times, only larger spatial-scale features are traceable in space and time. This confirms
Shukla’s (1981) early surmise that “the evolution of long waves remains sufficiently predict-
able at least up to one month.” He also suggested that improvements in model resolution and
physical parameterizations could extend the predictability of time and space averages even
beyond 1 month.

Buizza and Leutbecher (2015) explain that “‘forecast skill horizons’ beyond 2 weeks are
now achievable thanks to major advances in numerical weather prediction. More specifically,
they are made possible by the synergies of better and more realistic models, which include
more accurate simulation of relevant physical processes (e.g., the coupling of the atmosphere
to dynamical ocean and oceanwavemodels), improved data-assimilationmethods that allow
a more accurate estimation of the initial conditions, and advances in ensemble techniques.”
This explanation is consistent with earlier discussions from Shukla (1998) andHoskins (2013).
Shukla (1998) referred to “predictability in the midst of chaos” to explain how skillful long-
range predictions of phenomena like El Niño were possible despite fast error-growth rates
from small to large scales. Hoskins (2013) wrote about “discriminating between the music
and the noise,” and introduced the concept of a predictability chain, whereby, for example,
“a large anomaly in the winter stratospheric vortex gives some predictive power for the tro-
posphere in the following months.”

The reader is referred to Buizza and Leutbecher (2015) for a discussion on the sensitivity of
the skill of ensemble-based forecast fields to spatial and temporal filtering, as covered in
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Section 4. By applying the same metric to ECMWF ensemble forecasts with increasingly
coarser spatial and temporal scales, they showed that forecasts of instantaneous, grid-point
fields are skillful up to 16–23 days, while forecasts of large-scale, time-averaged fields have
skill up to 23–32 days (because they used ensembles with a maximum forecast length of
32 days, they could not comment onwhether the forecasts were skillful for even longer times).
These ensemble-based results are consistent with skill estimates for single forecasts, as
reviewed in Figs. 4 and 5.

The scale dependency of forecast skill is illustrated in Fig. 15, which shows the forecast
time up to which skillful forecasts can be generated (y-axis, logarithmic scale) as a function
of the scale of the different phenomena (x-axis, in kilometers). The graph includes not only the
ensemble-based estimates from Buizza and Leutbecher (2015), but also other estimates for
surface variables such as total precipitation, and for large-scale/low-frequency patterns such
as the North Atlantic Oscillation (NAO) and the Madden Julian Oscillation (MJO) and El
Niño. The vertical line at 36 km indicates the horizontal resolution of the ECMWF ensemble
forecasts in 2013–14, used by Buizza and Leutbecher (2015) to divide the resolved and the
unresolved scales. The red lines relative to the instantaneous and finer-scale surface variables
are closer to the x-axis, indicating that surface variables are less predictable. By contrast, the
blue lines related to teleconnection patterns (e.g., NAO and MJO) and to average Pacific re-
gion sea-surface temperature anomalies (SSTA) affected by El Niño are further away from the
x-axis and closer to the top-right part of the diagram, illustrating that these large-scale pat-
terns can be skillfully predicted months ahead.

FIG. 15 The Forecast Skill Diagram,which illustrates up towhich forecast time ensemble-based, probabilistic fore-
casts are skillful, is shown (from Buizza et al., 2015). The vertical line labeled “ENS grid spacing” denotes the grid
spacing of the ECMWF ensemble used in the Buizza and Leutbecher (2015) study (which was about 36 km), which
was used to generate some of the curves in this diagram.
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Two further features have been added to the diagram: a blue-line area, drawn schemati-
cally to include all the individual lines, and a pink “no-skill: region. The blue line shows the
forecast skill horizon for the ECMWF ensemble at the time of the Buizza and Leutbecher
(2015) and Buizza et al. (2015) studies. It is still much less than 10 days for very detailed fore-
casts. The fact that the blue line curves to the right indicates very clearly that the forecast skill
horizon, as discussed in earlier sections (cf. the discussion of Boer, 2003), is scale- and
variable-dependent. Forecast skill is also a function of geographical location and the season
of the year (see Buizza and Leutbecher, 2015). Forecast performance results presented in
Fig. 15 reflect the state of the art in science and technology as of the mid-2010s and are a func-
tion of errors in the analysis field (i.e., size of initial errors), and errors introduced due to ap-
proximations in numerical modeling. Should data assimilation and modeling techniques
continue improving, which will be partly due to future S2S research, forecast performance
statistics, or practical predictability, will likewise keep improving.

Fig. 15 demonstrates that a portion of large-scale and low-frequency variability can be suc-
cessfully predicted with today’s NWP systems. It is also evident (see the heavy solid line
showing an estimate of error variance in random forecasts for rotational wind in Fig. 5) that
the energy spectrum of errors, and thus the potential forecast signal, peak aroundwave num-
ber 8 and rapidly drop over the more predictable planetary scales. The predictable forecast
signal associated with the planetary scale temperature or other variables of common interest
is even lower, while the socioeconomic impact of such slow changes may be only marginal.
The introduction of proper coupling of the atmosphere with surrounding spheres in the com-
ing years is expected to raise predictable variance for larger-scale and longer-term motions,
but only to a limited extent. It is well understood that high-impact weather events are often
triggered by finer scale andmuchmore rapidly evolving features with no traceability beyond
a few days whatsoever. Such atmospheric features are often the cause of sudden or cata-
strophic events in other spheres as well, such as inland flooding, mudslides, snowdrifts,
surges, high ocean waves, and the breaking off of ice shelves. In summary, predictability
of the more critical small- and moderate-scale motions is quickly lost, while the low level
of the remaining predictability in the planetary scales over the extended range is associated
with low variability.

Lorenz (1975) and follow-on investigators (e.g., Chu, 1999) distinguish between first and
second kinds of predictability, the first influenced by the initial condition of a system itself,
while the second by its boundary conditions. Recognizing that in the context of a coupled
system, the conditions at the boundary between two subsystems—just as any other variable
of a coupled system—are also initial value dependent, we offer a somewhat different perspec-
tive on various types of predictability. Following the discussion given so far here, we define
the first kind, or traceable, predictability as the ability to continuously follow the propagation,
emergence, and demise of features in a forecast from the initial time on (see Fig. 16). Fig. 15
assesses this type of predictability in practice, with today’s NWP systems. For small-scale fea-
tures, traceability, as we saw it, is lost at early lead times. Due to the nonlinear interactions
between various scales of motion, the statistics (i.e., time frequency) of finer-scale phenomena
may be different under distinct larger-scale conditions.7

7Unlike traceable predictability, this type of behavior is not assessed in Fig. 15.
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High-impact weather event statistics, for example, are modulated by slowly varying and
somewhat predictable phenomena. In other words, high-frequency weather modulations are
conditioned on slower varying changes. We refer to the predictability of variations in such
frequency and other statistics of finer-scale features, conditioned on the first, traceable kind
of predictability of larger-scale motions, as second kind, or climatic predictability.

The second type of predictability or prediction, therefore, is concerned about climatic fre-
quencies of finer-scale weather phenomena conditioned on the presence of still somewhat
predictable large-scale phenomena, as compared to the full climatological frequency of such
events. The frequency of tornadoes (see, e.g., the 4–8-day outlooks issued by NCEP’s Storm
Prediction Center, http://www.spc.noaa.gov/products/outlook/) or hurricanes (see, e.g.,
seasonal outlooks issued by NCEP’s Climate Prediction Center, http://www.cpc.ncep.
noaa.gov/products/outlooks/hurricane.shtml) may be below or above overall climatologi-
cal frequencies, depending on large-scale weather or seasonal regimes that remain somewhat
predictable even after the traceability of smaller-scale individual features at any specific place
or time is lost. See Chapter 17 of this book for examples of, and more discussion about, the
predictability of certain statistics of some of these events. An ensemble of forecasts, for exam-
ple, may reveal some skillful information on the phase of some still predictable, larger-scale
features (i.e., traceable predictability), while beyond their own traceable predictability, the
frequency of finer-scale phenomena in ensemble members may reflect frequency statistics
consistent with the predicted larger scales (i.e., climatic predictability). This second type of
predictability may play a significant role, especially in extended-range S2S predictions.

7 CONCLUDING REMARKS: LESSONS FOR S2S FORECASTING

This chapter reviewed the basis for and limits of weather predictability. We saw how sys-
tematic efforts aimed at exploiting the first kind or traceable predictability led the NWP com-
munity to the extension of the weather forecast horizon. Numerical modeling and data

FIG. 16 A schematic illustrating traceable and climatic predictability. On the shorter, weather timescales, individ-
ual observed events (red bars) are predicted (blue bars) with acceptable timing errors (traceable predictability).
Low-frequency changes in the frequency or other statistical characteristics of the observed events associated with
large-scale regimes, however, can be predicted for longer periods (climatic predictability).
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assimilation technique development has focused on capturing short timescale behavior pri-
marily in the atmosphere and near its boundaries that are most critical to weather forecasting.
Building on these successes, inroads also have been made in predictions beyond the limit of
traceableweather forecasting. As in the past decade, NWP adopted an Earth systemmodeling
approach that fully couples atmospheric motions with slower processes, and clear evidence
has emerged about the possibility of predicting conditional statistics or the climatology of
weather on extended ranges. Aiming for amore thorough exploitation of this second, climatic
type of weather predictability, and building on the experience and successes of weather fore-
casting, S2S must embark on its own systematic path to realistically describe and exploit in
both numerical modeling and initial state estimation slowly varying processes in adjoining
spheres that in the future can impart significant additional skill in predicting large-scale at-
mospheric regimes. Statistics of associated high-impact weather can then be derived by en-
semble or other methods for more widespread and quantitative socioeconomic applications.
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1 INTRODUCTION

Sub-seasonal characteristics of tropical rainfall such as rainfall occurrence and monsoon
onset date are important for rain-fed agriculture, where long dry spells can ruin a crop
and where the onset of the rainy season is a common planting time (Sivakumar, 1988).
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Sometimes referred to as “weather within climate,” it is the daily statistics of weather that
ultimately lead to the societal impacts of climate anomalies, such as floods and agricultural
droughts. While the timing of individual wet and dry spells cannot be predicted beyond the
weather scale, skillful sub-seasonal to seasonal (S2S) forecasts of their frequency of occurrence
may be feasible and could be of great societal value.

The seasonal rainfall amount (R hereafter, where the overbar denotes time-averaging) is
the simplest and most general characteristic of a rainy season because it sums all rainy events
during a season. It is generally assumed that R is the most predictable precipitation quantity
on seasonal time scales at regional scales (L! 100"1000 km), and seasonal forecasts ofR (usu-
ally on 3-month periods) are currently issued by many forecasting centers on a regular basis
(Goddard et al., 2001; Gong et al., 2003; Barnston et al., 2010; Kirtman et al., 2014; Tompkins
et al., 2017). Seasonal rainfall predictability is primarily associated with sea surface temper-
ature (SST) anomalies and coupled ocean-atmosphere modes of variation (primarily El Niño
Southern Oscillation [ENSO]), but anomalies in soil moisture (The GLACE Team et al., 2004;
Douville and Chauvin, 2000), snow cover and sea ice (Cohen and Entekhabi, 1999), and
stratosphere-troposphere interactions (Thompson et al., 2002; Cohen et al., 2010) also contrib-
ute. The persistent and large-scale atmospheric responses to these anomalous forcings lead to
near-homogeneous anomalies of R at regional scales. This link between predictability and
spatial scale of R anomalies comes from the systematic repetition of a near-constant forcing
and response across the season, enabling the emergence of a predictable “signal” above the
unpredictable “noise.” In this context, noise is a statistical quantity and may be seen as the
impacts of all atmospheric weather motions that are canceled out through the temporal sum-
mation across a season. This signal-to-noise ratio concept is analogous to the familiar ensem-
ble approach used in general circulation model (GCM) simulations forced by boundary
conditions (Rowell, 1998). The mean across ensemble members (stations or grid points, re-
spectively) isolates the signal through repetition of the same dynamical response to the
forcing(s) in each ensemble member (stations or grid points), independent of its different ini-
tial conditions (e.g., various locations), while the spread among the members (stations or grid
points) measures the noise; that is, the fraction of the response not determined by the forcing
(Shukla, 1998). Thus, metrics of potential predictability based on spatial coherence of ob-
served anomalies, such as the correlogram, decorrelation distance, number of degrees of free-
dom, etc., are based on a similar concept to potential predictability revealed by GCM
ensembles. Note that we do not attempt to answer the downscaling question of how the signal
may be locally modified within a near-homogeneous region.

A simple yet instructive decomposition of R involves the product of the number of wet

days (NR) (e.g., # 1 mm), and the mean rainfall intensity (!I¼ R
NR
) on wet days. !I reflects both

the instantaneous rain rate (Le Barb"e et al., 2002), which is high for convective rainfall, and the
duration of rainy events (Ricciardulli and Sardeshmukh, 2002; Smith et al., 2005; Dai et al.,
2009), which is related to the spatial scale and the movement of the rain-bearing systems;
these range from localized thunderstorms to larger organized systems such as tropical cy-
clones and mesoscale convective complexes lasting from several hours to a day or more at
a fixed location. Ricciardulli and Sardeshmukh (2002) have shown that tropical wet events
estimated from satellite images last in mean 4.9 hours over the continents and 6.2 hours over
the oceans. Individual thunderstorms can produce very high local rainfall rates (Dai et al.,
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2009; Trenberth et al., 2017), which make the interannual variations of !I noisy even after
averaging over a season (i.e., Moron et al., 2007). By contrast, the rainfall occurrence field
tends to reflect spatiotemporal hierarchical organization of convection (Orlanski, 1975). Pre-
vious analyses of rain gauges (or 0.25 degrees grid points) in several tropical regions, includ-
ing India and tropical Africa (Moron et al., 2006, 2007, 2009b, 2017), found that the spatially
coherent interannual covariations ofR aremostly conveyed byNR, while !I is a far noisier char-
acteristic; the spatial autocorrelation of !I decaysmore quickly than for eitherR orNR due to its
dependency on the wettest few days of each season. A similar finding has been obtained with
finer space-time data that allow the number and intensity of subdaily wet events to be quan-
tified, finding that interannual-to-decadal variations of precipitation in Sahelian-Sudanian
and Guinean Africa are mostly related to changes in the number of wet events, primarily
due here to mesoscale convective systems (MCSs) (Le Barb"e et al., 2002; Lebel and Ali,
2009). This suggests that the predictability of interannual variations of seasonal amounts at
regional-scale over these regions of Africa is likely to stem mostly from changes in the fre-
quency of the MCSs rather than from changes in their intensity.

The basic decomposition of R in the previous paragraph could be refined by considering
onset and end dates of the rainy season, enabling differentiation, for example, between a dry
spell associated with a delayed onset from those occurring within the monsoon period itself
(Moron et al., 2015a). R, then, may be more fully decomposed in terms of the daily rainfall
statistics (e.g., rainfall frequency andmean intensity) during each temporal phase of themon-
soon season separately. The sources of predictability for these daily rainfall characteristics in-
volves modulation of the various rain-bearing systems (from the individual thunderstorms to
MCSs and tropical depressions) by the slow phenomena mentioned here. For example,
regional-scale monsoon onset over theMaritime Continent in September-November is almost
systematically delayed (advanced) during warm (cold) ENSO events (Haylock and McBride,
2001; Moron et al., 2009a), while interannual variations in rainfall during the core of monsoon
season, around December to February, are less spatially coherent and less potentially predict-
able (Moron et al., 2010). Another shorter source of predictability is provided by convectively
coupled equatorial waves (CCEW;Wheeler and Kiladis, 1999; Lubis and Jacobi, 2015), includ-
ing the Madden Julian Oscillation (MJO; Waliser et al., 2003; Zhang, 2005).

For sub-seasonal forecasts, the time aggregation period is generally only 1 or 2 weeks (Zhu
et al., 2014), so a stronger signal or reduced noise will be required in order to obtain a compa-
rable signal-to-noise ratio to the seasonal case. There is increasing evidence that the popular
2-week “weeks 3 + 4” (i.e., 15–28 forecast days after the starting dates) sub-monthly range rep-
resents suchanopportunity, at least in somecases.Certain constellationsof theMJOandENSO
may give rise to windows of forecast opportunity where the signal is sufficiently enhanced
(Li and Robertson, 2015). Summing over 2 weeks reduces the weather noise for certain stages
of themonsoon’s seasonal evolution and emphasizes any intraseasonalmode of variation that
isnot canceledoutover2consecutiveweeks.Even if the impact ofaparticularMJOphaseovera
given region may typically last only less than a week, its impact can still be appreciable over a
2-week period because the opposite phase will not be included in the same 2 weeks.

This chapter presents an analysis of tropical rainfall weather-within-climate predictability
based on estimates of spatial coherence calculated from gridded observed rainfall datasets.
Running 15-day time windows are used to identify the sub-seasonal modulation. With these
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estimates of potential predictability in hand, we harness them to interpret the patterns of
anomaly correlation skill seen in European Center for Medium-Range Weather Forecasts
(ECMWF) week 3 + 4 hindcasts.

2 DATA AND METHODS

2.1 Daily Rainfall and OLR

Two primary rainfall datasets are investigated. The first is the Indian Meteorological De-
partment (IMD) high-resolution (0.25 degrees % 0.25 degrees) gridded daily rainfall data for
the Apr.-Nov. (extended summer monsoon season) 1901–2014 (Pai et al., 2014; Moron et al.,
2017). These gridded data were prepared by spatially interpolating daily rainfall from 6955
Indian stations (with varying data availability periods) using distance-weighted interpolation
(Shepard, 1968). The interpolated values were computed as the weighted sum of the station
data within a search radius of 1.5 degrees. The scheme was locally modified by including di-
rectional effects and barriers (Shepard, 1968). The second is the daily Global Precipitation Cli-
matology Project (GPCP) 1.3 (beta version) dataset (1 degree % 1 degree) from Oct. 1996 to
Sep. 2016. Daily precipitation values are estimated from multisatellite observations and are
calibrated versus rain gauges at a monthly time scale (Huffman et al., 2001). Some computa-
tions are also made using rainfall estimates from the pentad CPCMerged Analysis of Precip-
itation (CMAP) (2.5 degrees % 2.5 degrees) from Jan. 1979 to Dec. 2015 (Xie and Arkin, 1996).
The pentad data are just copied to the daily time scales. Lastly, we use the interpolated daily
National Oceanic and Atmospheric Administration Outgoing Longwave Radiation (NOAA
OLR) dataset (2.5 degrees % 2.5 degrees) from Jun. 1974 to Dec. 2016 (Liebmann and
Smith, 1996).

2.2 S2S Forecasts

Reforecasts of total precipitation are evaluated for the ECMWF Variable-Resolution En-
semble Prediction System monthly forecast system (VarEPS-monthly; Vitart et al., 2008), pre-
pared for the WWRP/WCRP S2S project database (Vitart et al., 2017). The atmospheric
component of the ECMWF model (version CY41R1) has 91 vertical levels and a horizontal
resolution of TCo639 (16 km) up to day 10 and TCo319 (32 km) after day 10. More model de-
tails are given in Vitart et al. (2017). Semi-weekly reforecasts of the ECMWF model over the
20-year (Jun. 1995–May 2014) reforecast period are analyzed, corresponding to real-time fore-
cast start dates every Monday and Thursday from Jul. 2015 to Jun. 2016. The ECMWF
reforecasts consist of 1 control and 10 perturbed forecasts on each start date, and the ensemble
mean skill is evaluated. The GPCP version 2.1 (Huffman et al., 2009) daily precipitation es-
timates on a 1 % 1 grid are used for forecast validation. The daily data are averaged from
day 15 to day 28 to generate week 3 + 4 time series for both forecasts and observations.
The ECMWF total precipitation reforecast is interpolated from 1.5-degrees into 1-degree res-
olution so it can be compared with the GPCP dataset.
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2.3 Method to Estimate the Spatial Coherence

The spatial coherence is empirically estimated using the spatial autocorrelation of the
interannual ranks of running 15-day amounts (and frequency of wet days receiving
#1 mm) in a 500-km radius. Considering the ranks instead of the amounts themselves re-
duces the skewness. Other radii, from 150 to 1000 km, leads to similar spatial and temporal
modulations of the spatial coherence. In the same way, the main results are not very sensitive
to the data because OLR or CMAP datasets lead to similar results even if their lower resolu-
tion (i.e., 2.5 degrees vs 1 degree grid) tends to increase the average spatial autocorrelation.
Lastly, the spatial autocorrelation in a 500-km radius introduces a weak negative bias about
the spatial coherence, where the spatial autocorrelation pattern is anisotropic as around the
Pacific and Atlantic Inter Tropical Convergence Zone (ITCZ) (not shown), but computing the
area of spatial autocorrelation above a given threshold as 1/e (Ricciardulli and Sardeshmukh,
2002) is far more time-consuming. In summary, our main results about the spatial and tem-
poral modulations of the spatial coherence appear to be rather insensitive to data, horizontal
resolution, and empirical estimation.

3 RESULTS

3.1 Daily Rainfall Characteristics of the Indian Summer Monsoon

Fig. 1 gives an example of the diversity of sub-seasonal scenarios for two anomalously dry
(1986 and 2002) and twowet (1983 and 1988)monsoon seasons, at two 0.25 degrees grid points
near Mumbai (18 degrees 560N, 72 degrees 500E) and New Delhi (28 degrees 370N, 77 degrees
140E). AtMumbai, all four onsets are quite close to the long-termmean (Jun. 13), while the end
is anomalously late in the wet years and early in the dry ones. At New Delhi, it is not possible
to define onset and end dates due to erratic rain in 1986 (i.e., only three significant wet spells
separated by long dry spells; Fig. 1F), while the 2002 season is shorter and appears shifted
later than usual, mostly due to a very long dry spell from late June to late July (Fig. 1H). Both
dry seasons at NewDelhi illustrate the challenge of defining the true onset of the rainy season
as soon as fairly long dry spells occur after (or between) the first wet spells, such as around
late June in 2002 in NewDelhi (Fig. 1H). This uncertainty in onset definitionmakes prediction
challenging. Note also that both dry years share a very long break in July at New Delhi and
Mumbai despite the distance of 1100 km between them. The anomalously wet season in 1983
(Fig. 1B) is related to a longer season than usual in NewDelhi, but also to more very wet days.
Such behavior is also observed in 1988 (Fig. 1D), except for the end, which occurs close to the
climatological long-term mean. Unlike at Mumbai, the wet days at New Delhi are clearly
more intense during anomalously wet seasons.

Fig. 1 illustrates that a good (i.e., anomalously wet) monsoon on the subcontinental scale
(Sontakke et al., 2008), such as in 1983 or 1988, can have very different sub-seasonal evolutions
on the local scale (Moron et al., 2017), and emphasizes the importance of predicting these
daily statistics. This example also illustrates the difficulty of calculating daily rainfall statistics
strictly between the monsoon onset and end dates because these dates themselves are subject
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FIG. 1 Daily mean rainfall (bars) in millimeters for two 0.25 degrees grid points from the IMD dataset
corresponding to the locations of Mumbai (left column) and New Delhi (right column) for two “good” (anomalously
wet) (i.e., 1983 and 1988) JJAS monsoons and “bad” (anomalously dry) JJAS monsoons (i.e., 1986 and 2002) at the
Indian scale (Sontakke et al., 2008). The vertical dashed red lines denote the climatological onset and end dates of
the season (defined as the first and last wet day of a 5-day wet spell receiving at least the climatological amount re-
ceived during 5-day wet spells (fromApril 1 to November 30) without any 10-day dry spell receiving less than 5 mm
in the following 30 days [and previous for end days]) (Moron et al., 2017). The onset is computed from Apr. 1 and the
end is computed retrospectively from Nov. 30. The vertical blue dashed lines denote the onset and end dates for the
given seasons and locations. (A) Mumbai 1983, (B) New Delhi 1983, (C) Mumbai 1988, (D) New Delhi 1988,
(E) Mumbai 1986, (F) New Delhi 1986, (G) Mumbai 2002, (H) New Delhi 2002.



to great uncertainty. A flexible alternative is to consider the sub-seasonal modulation of spa-
tial coherence within a sliding window across the season. The window should be short
enough to properly distinguish between the various stages of the monsoon, such as onset,
core, and end, but long enough to filter out the shortest time scales associated with synoptic
systems. It should also be short enough to capture different phases of the MJO and related
phenomena, such as the northward-propagating intraseasonal oscillation (ISO)
(Krishnamurthy and Shukla, 2000, 2008; Moron et al., 2012).

3.2 Sub-seasonal Modulation of Spatial Coherence Across India

The sub-seasonal evolution of spatial coherence over India is shown in Fig. 2A for R, NR

over Monsoonal India (defined by black contour in panels B–E; Moron et al., 2017). Both
curves have a similar evolution, with a small, short-lived peak around the mean onset date
and a larger and longer one around the mean withdrawal ones (Fig. 2A). The spatial coher-
ence of both rainfall amounts and frequency is at minimum during the core of the rainy sea-
son, when the climatological mean amounts reach their largest annual values. Such behavior
has been observed using other metrics of spatial coherence, including the number of degrees
of freedom (Moron et al., 2017). The spatial coherence is larger for frequency than for
amounts, especially during the core of the season (thin vs thick red curves; Fig. 2A).

The four lower subpanels of Fig. 2 show the spatial patterns of the leading empirical orthog-
onal function (EOF) of the interannual ranks of amounts at all India grid points for four 15-day
subperiods around the onset, during the core and then around the withdrawal (vertical red
lines in Fig. 2A). The leading EOF pattern is dominated by the interannual variability over
the coremonsoonal zone, including theWesternGhats, the northern part of the Peninsula,most
of the Indo-Gangetic plain, and the desert areas in the northwest. However, positive loadings
are generally considerably higher around the onset (Fig. 2B) andwithdrawal (Fig. 2E) than dur-
ing the core of themonsoon in July (Fig. 2C) andAugust (Fig. 2D). The explained variance drops
significantly during July-August. The interannual variations of the 15-day amount and fre-
quency around the onset date will partly convey the anomalous advance or the delay of onset,
consistent with the sharp peak in spatial coherence seen near the beginning of June in
Fig. 2A. However, the more gradual increase from late August to early October may be
accounted for by changes in withdrawal date, which takes more time to achieve across India
than onset (Moron and Robertson, 2014) and/or the buildup of spatial coherence during the
monsoon season itself. Overall, this sub-seasonalmodulation suggests that a significant portion
of precipitation in July-August is due to intense rainfall (Stephenson et al., 1999) embedded in
small tomesoscale features, which have a smaller spatial scale than the large-scale atmospheric
circulation patterns responsible for the monsoon onset and withdrawal (Moron et al., 2017).

3.3 Sub-seasonal Modulation of Spatial Coherence Over the Whole
Tropical Zone

Do these findings for India generalize to thewhole tropical zone (30 degreesN to 30 degrees
S)? Fig. 3 shows the results of a similar analysis of the global tropics (including oceans) using
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daily rainfall amounts fromGPCP. The analysis is applied over thewhole calendar year using
365 running 15-day windows (top panel) and those belonging to the four usual meteorolog-
ical seasons (lower panels).

The spatial coherence of 15-day GPCP rainfall anomalies is much lower over land than over
the oceans in general. Area averages are given in Table 1, including for coastal areas (defined as
sea&500 km to land) and open ocean (≫500 km from land). Some of the smallest values of spa-
tial coherence are associated with high mean daily intensity (not shown), especially over the
continents (South and Southeast Asia, Western Amazonia, etc.), although over the oceans,
the equatorial eastern Indian Ocean and West Pacific warm pool ocean regions exhibit both

FIG. 3 Mean spatial autocorrelations in the 500-km radius for GPCP. The spatial autocorrelations are computed
using ranks of amounts of rainfall between the central grid points and all grid points in a 500-km radius (including
latitudes north and south of the latitudinal limits of the map). The running 15-day windows where the climatological
mean amount ≪10 mm are not considered in the time average. Blank areas never reach the threshold of a climato-
logical mean #10 mm in any of the running 15-day windows. All computations are done over Oct. 1996 to
Sep. 2016. For the seasonal maps (four lower panels), all running 15-day belonging to a given season are considered
(i.e., for December-February, the seventy-six 15-day periods from Dec. 1-Dec. 15 to Feb. 14-Feb. 28 are considered).
(A) Year, (B) DJF, (C) MAM, (D) JJA, (E) SON.

FIG. 2, CONT’D (A) Mean seasonal variations of spatially averaged amounts (blue line, left ordinate) and spatial
autocorrelations of interannual ranks of mean amount (bold red, right ordinate) and frequency of wet days receiving
#1 mm (thin red, right ordinate) in a 500-km radius in running 15-day windows (centered on the dates shown on the
abscissa) averaged over the summer monsoonal regime (Gadgil, 2003) defined in Moron et al. (2017) from a clustering
of the mean annual cycle across India and underlined by a black contour in panels (B)–(E). The grid points and 15-day
windows receiving≪ 10 mm in mean (over the 1901–2014 period) are excluded from the spatial average of autocor-
relations. The vertical red line in panel (A) shows the center of the four 15-daywindows used to extract the leading EOF
of amount ranks in panels (B)–(E) computed over all India grid points. The EOFs are shown as loadings; that is, the
correlations between the amount ranks and the leading principal component and the explained variance is noted in
the panel (B) to (E) titles. Correlations that are not significant at the two-sided 95% level according to a random-phase
test are indicated by gray areas. (A) Mean amount and spatial autocorrelation in 500-km radius [amount, frequency].
(B) EOF 1, May 30–June 13, V ¼ 27%. (C) EOF 1, Jul. 2–16, V ¼ 19%. (D) EOF 1, Aug. 1–15, V ¼ 23%. (E) EOF 1,
Sep. 28–Oct. 12, V ¼ 29%.
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high mean intensity and strong spatial coherence (Fig. 3). Relative minima in spatial coherence
coincide with the ITCZ over the northern equatorial central and eastern Pacific and Atlantic
oceans (Fig. 3), where the pattern of the spatial autocorrelation tends to be primarily zonal
rather than isotropic. Seasonal values of spatial coherence peak in austral summer and are
at minimum during boreal summer, especially across land in the Northern Hemisphere. The
seasonal modulation may be partly related to the amplitude of ENSO events peaking near
the end of the calendar year. Several pockets of large spatial coherence coincide with regions
of high seasonal rainfall predictability, including the Maritime Continent south of the equator
around the austral summer monsoon onset in SON (September-November) (Haylock and
McBride, 2001;Moron et al., 2009b), and near the boreal summermonsoon onset over the South
China Sea and Philippines in MAM (March-May) (Moron et al., 2009a). Low values of spatial
coherencemay be partly due to cancelation between positive and negative correlationswithin a
500-km radius, such as those between northeast India and the Indo-Gangetic plain during the
core of the rainy season (Fig. 2C and D), or they may reflect increased ascent in a deep convec-
tion center and increased subsidence nearby. Table 1 also includes the pattern correlations be-
tween GPCP spatial autocorrelations and those computed using CMAP and OLR datasets,
demonstrating that the results are quite robust to the choice of rainfall or deep convection
dataset. The lower spatial coherence across land versus oceanmay be, at least partly, explained
by the interactions promoting small-scale deep convection and involving the diurnal cycle,
land-sea, and mountain-valley breezes, as well as gravity wave effects (Yang and Slingo,
2001; Slingo et al., 2003), which are far stronger over the landmasses and the coastal areas than
over the open seas.

The sub-seasonal evolution of spatial coherence across the tropics is depicted in Fig. 4, and
constructed by identifying the timing of theminimum andmaximum of local spatial coherence
conditioned on the local seasonal cycle of the 15-day mean rainfall amount. The spatial coher-
ence and mean rainfall are low-pass-filtered using a recursive digital filter with a cut-off at
1/90 cycle/day.Most of the tropical zone is associatedwith a unimodal regime and twodistinct
rainy seasons are rare (not shown). Fig. 4 shows the timings ofminimum andmaximum spatial
coherence during the year, considering only periods when the local climatological mean
amount reaches at least 10 mmper 15 days, for all tropical grid points (panels A andD), as well

TABLE 1

Land Coast Open Sea OLR CMAP

Year 0.53 0.64 0.68 0.61 0.65

Dec.-Feb. 0.59 0.66 0.71 0.66 0.69

Mar.-May 0.55 0.64 0.69 0.67 0.68

Jun.-Aug. 0.49 0.62 0.66 0.70 0.67

Sep.-Oct. 0.53 0.64 0.67 0.64 0.64

Notes: Columns 2–4: Spatial averages of the mean autocorrelation in a 500-km radius for land, coast (&500 km from land) and open sea (≫500 km
from land). The areas where mean rainfall over sliding 15-day windows is always ≪10 mm during the periods shown in Column 1 are not
considered in the spatial averages; columns 5–6: pattern correlation between GPCPmaps (linearly interpolated over CMAP andOLR grids) and the
mean autocorrelation in a 500-km radius for the whole tropical zone. The areas where mean rainfall over sliding 15-day window is always≪10 mm
during the periods shown in column 1 are not considered in the pattern correlations.
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as for land (panels B and E) and ocean (panels C and F) grid points separately. The minimum
spatial coherence tends to occur around the time of the highest rainfall, especially over land.
Maximum spatial coherence tends to occur around the onset and end of the wet season, while
it is less common around the peak of the local seasonal cycle of rainfall, especially over land
(Fig. 4). The sub-seasonal modulation is less clear for the ocean.
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FIG. 4 Frequency of (A–C)minimum and (D–F)maximum spatial coherence (as estimated by themean correlation
between the interannual ranks of amounts on sliding 15-day windows at a central grid point and those at the sur-
rounding ones in a 500-km radius) versus the eight phases of the mean amount of rainfall. The search is limited
to the time when the mean amount #10 mm per 15-day windows, but the eight phases are computed on the whole
year from the low-pass filtered (cut-off ¼ 1/90 cycle/day) annual cycle of mean amount. The abscissa indicates the
approximative end, minimum, start, and maximum of the local rainy season. In cases of two (or indistinct) rainy sea-
sons, phases 2–3 correspond to the lowest annual rainfall and phases 6–7 correspond to the highest ones. The ob-
served frequencies are indicated by circles, while the dashed lines are 95% confidence interval (CI; dashed lines)
computed from 500 random resamplings of the time series of spatial coherence. Red and blue circles indicate the sig-
nificant positive and negative anomalies at the two-sided 95% levels, respectively. The first column is for the whole
tropical zone. The second and third columns are, respectively, for land and ocean. (A)Min. sp. coh. (all), (B)Min. sp. coh.
(land), (C) Min. sp. coh. (sea), (D) Max. sp. coh. (all), (E) Max. sp. coh. (land), (F) Max. sp. coh. (sea).
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Fig. 5 shows the mean seasonal cycle of low-pass-filtered mean rainfall amount and spatial
coherence for 12 regions chosen across the tropics, constructed from GPCP data. India
(Fig. 5B) shows a similar behavior as those shown on Fig. 2A despite a different resolution
and period covered. It is also similar to the Sahel (Fig. 5A), with the minimum in spatial co-
herence coincidingwith the highest mean rainfall amount around early August, with the spa-
tial coherence peaking on either side, near the start and end of the rainy season. Similar
behavior is seen for most of the regions that include only land points (Fig. 5A–D, F, J, K),
as well as over the North Atlantic ITCZ (Fig. 5L). Equatorial East Africa displays a different
behavior during the “long rains” in MAM, with spatial coherence peaking near the start in
March and then decreasing to mid-June (Camberlin et al., 2009; Moron et al., 2013, 2015a);
spatial coherence is then broadly positively correlated with the seasonal evolution of rainfall
during the short rains in OND (October-December) (Fig. 5E). Similar behavior is also seen for
South Africa (Fig. 5K) and Amazonia (Fig. 5J), but with a weak amplitude. The remaining
oceanic boxes over Western, Central, and Eastern equatorial Pacific (Fig. 5G–I) do not show
a clear seasonal modulation of the (usually strong) spatial coherence.

Figs. 4 and 5 show that the spatial coherence in rainfall amount is usually low around the
core of the wet season and tends to peak near its end or during its transition to dry season.
They show also that the modulation is different between land and oceanic grid points, with
the clearest season modulation found over land, where the monsoons are themselves stron-
gest (note that completely dry periods (i.e., any 15-day window receiving≪ 10 mm in mean)
are excluded from the calculations). These figures suggest that the anomalous advance and
delay of the end of wet seasons (and secondarily their onsets) exhibit a larger scale than the
core of the season,when small-scale intense, wet eventsmay decrease the spatial coherence, at
least over several continental areas such as those shown in Fig. 5A–D and F. This behavior
does not appear across most of the oceans, and several continents do not exhibit the common
modulation revealed by the continental regions quoted previously. As before, the explana-
tions may involve either the variable amplitude of the impact of CCEWs (including MJO)
or the variable influence of diurnal cycle, small-scale land-sea and mountain breezes and re-
lated gravity waves on local-scale rainfall. A larger (weaker) spatial coherence is expected
when the first (second) processes dominate the overall variance of daily rainfall.

3.4 Skill and Spatial Coherence of S2S Reforecasts

This section presents maps of S2S model precipitation spatial coherence (Fig. 6A) and fore-
cast skill (Figs. 6B and 7) estimated from ECMWF reforecasts, at a forecast lead time of
15–28 days (labeled “week 3 + 4”). Skill maps are constructed of the temporal correlation
of anomalies (CORA), using the ensemble means of fortnight week 3 + 4 averages of the
ECMWF reforecasts. The anomalies are calculated by removing the observational long-term
mean of each season, as well as the models’ week 3 + 4 reforecast climatology, to exclude the
mean bias andmodel drift. ECMWF reforecasts from all the semiweekly start dates that fall in
each season are lumped together as a time series in order to compare with their observed
counterparts.
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FIG. 5 Mean amount (in millimeters, blue lines, left ordinate) and spatial correlation of interannual ranks of amount in 500-km radius (red lines, right
ordinate) spatially averaged over 12 tropical regions defined below. The amounts and correlations are computed using GPCP data on running 15-day
windows (the center of each 15-day window is indicated on the abscissa) and the time series are low-pass-filtered (cut-off ¼ 1/90 cycle/day). Data where
the mean amount≪10 mm in running 15-day windows are not used in the spatial averages. The gray panels use only oceanic grid points, while the blank
panels use only landmass grid points. (A) Sahel: 12–16 degrees N, 15 degrees W-10 degrees E; (B) India: 17–30 degrees N, 72–87 degrees E; (C) SE Asia:
12–30 degrees N, 100–122 degrees E; (D) Central Am.: 12–25 degrees N, 240–270 degrees E; (E) Equat. E. Afr.: 5 degrees S-5 degrees N, 35–50 degrees E;
(F) S. Indonesia: 10 degrees S-0, 90–120 degrees E; (G) ITCZW. Pacific: 0–10 degrees N, 135–160 degrees E; (H) C. Pacific: 5 degrees S-5 degrees N, 160–210
degrees E; (I) ITCZ E. Pacific: 5–13 degrees N, 250–280 degrees E; (J) Amazonia: 15 degrees S-0, 290–320 degrees E; (K) S. Africa: 28–15 degrees S, 20–40
degrees E; (L) ITCZ Atlantic: 5–13 degrees N, 320–345 degrees E.



The spatial coherence of week 3 + 4 precipitation anomalies from the ECMWF control run
(Fig. 6A) (computed from the 20 reforecast years corresponding to each Monday real-time
forecast start date) is very similar to the observed estimate (Fig. 3A). The pattern correlation
between both maps is 0.73, reproducing the contrast between land and sea. The spatial aver-
ages of ECMWF spatial coherence equal, respectively, 0.49, 0.57, and 0.62 for land, coastal,
and open ocean (close to the GPCP estimates in Table 1).

The geographical distribution of ECMWFweek 3 + 4 forecast skill broadly resembles that of
the spatial coherence, although the pattern correlation between them is low (0.27). The similar-
ity in patterns is mostly related to the much higher skill over ocean than over land, especially
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FIG. 6 (A) Mean spatial autocorrelations in 500-km radius for ECWMF week 3 + 4 reforecast precipitation anom-
alies. The spatial autocorrelations are computed using ranks of interannual anomalies of rainfall between the central
grid points and all grid points in a 500-km radius (including latitudes north and south of the latitudinal limits of the
map); (B) ECMWF week 3 + 4 anomaly correlation coefficient (CORA) for total precipitation for all year. Any CORA
value >0.3 is statistically significant at the 99% CI by a one-tailed t-test (as only positive ACC is considered skillful).
The areas receiving ≪ 10 mm in Fig. 3A are marked as blank areas.

FIG. 7 ECMWF week 3 + 4 anomaly correlation coefficient (CORA) for total precipitation for (A) DJF, (B) MAM,
(C) JJA, and (D) SON. Any CORA value >0.3 is statistically significant at the 99% CI by a one-tailed t-test (as only
positive ACC is considered skillful). The areas receiving ≪ 10 mm in Fig. 3B–E are marked as blank areas.
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over the tropical Pacific due to the high local persistence there of ENSO-related SST anomalies
(Li andRobertson, 2015). Thegeographical extent of this highlypredictablebelt region changes
with the season (Fig. 7), being relatively narrower in JJA (June-August) (red regions in the Pa-
cific sector ofFig. 7).Goodskill canalsobe foundover thewestern IndianOcean,whichextends
westward toAfrica, in borealwinter and fall (Fig. 7A andD). Thewestern tropicalAtlantic and
the adjacent continents such as eastern Amazonia also show good skill in boreal winter and
spring (Fig. 7A and B). In contrast, the eastern tropical Indian Ocean andMaritime Continent
are more predictable in austral winter and spring (Fig. 7C and D).

These seasonal changes in skill are generally consistent with those in the spatial coherence
as shown in Fig. 3, with higher spatial coherence being associated with higher forecast skill.
This is especially clear over the Maritime Continent, where low skill over the islands tends to
coincide with lower values of spatial coherence there compared to the surrounding ocean.
However, this correspondence between forecast skill and spatial coherence of rainfall anom-
alies is less clear elsewhere. For example, skill is often high over the central and eastern Pacific
ITCZ and around the Atlantic ITCZ despite relatively low spatial coherence. The lack of skill
over most continents for week 3 + 4 forecasts indicates that much room remains for progress
in dynamical models in capturing sub-seasonal variability in the tropical rainfall. However,
the comparison with spatial coherence suggests that some of these regions are often intrinsi-
cally less predictable.

4 DISCUSSION AND CONCLUDING REMARKS

Most previous predictability studies of tropical rainfall have focused primarily on
interannual variations of seasonal rainfall amount, typically associated with the atmospheric
response to slow boundary forcings, primarily ENSO and other coupled ocean-atmosphere
modes of variation. The temporal summation across the season smooths the characteristics of
individual rainfall events, thus emphasizing the impact of systematic (i.e., near-constant in
time) “slow” forcings. The progressive temporal summation across the season also increases
the spatial coherence of rainfall anomalies due to the near-constant modulation of either in-
tensity, size, or frequency of the instantaneouswet events across a region.We focused here on
quantifying the spatial coherence of sub-seasonal (2-week average) rainfall anomalies,
allowing different sub-seasonal stages during a wet season to be distinguished. The spatial
coherence is estimated with the mean spatial autocorrelation in a 500-km radius around each
grid points. These observational sub-seasonal estimates of predictable spatial scale are then
compared with estimates of forecast skill from ECMWF week 3+4 reforecasts from the S2S
database.

The analysis of 0.25 degrees daily Indian rainfall illustrates the fact that two “good” mon-
soons (1983 and 1988) and two “bad” monsoons (1986 and 2002) at the Indian scale exhibit
very different sub-seasonal evolutions at the local scale (Fig. 1). The spatial coherence of bi-
weekly rainfall anomalies peaks near onset and withdrawal of the summer monsoon and
reach its minimum during the core of the rainy season, in JA (Fig. 2A). This illustrates an ex-
ample where the seasonal (JJAS) amount—which is dominated by the largest rainfall in JA—
may blur smaller predictable signals in June or September. The leading EOF of ranks of
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amounts in JA (Fig. 2C and D) shows an out-of-phase pattern between most of the peninsula
and western India on one hand and the Himalayan foothills and northeastern parts of India
on the other hand, which may be viewed as the fingerprint of the main intraseasonal mode of
variation (i.e., ISO; Krishnamurthy and Shukla, 2000, 2008; Moron et al., 2012), but the largest
loadings# 0.6 also cover a smaller area in JA than around the onset (Fig. 2B) and withdrawal
(Fig. 2E) stages of the borealmonsoon. This sub-seasonal modulationwith the smallest spatial
coherence recorded around the core of the wet season appears to be rather general across the
tropical continents (Fig. 4B and E), even if there are some exceptions (such as Equatorial East-
ern Africa, Southern Africa, and Amazonia; Fig. 5E, J, and K). Moreover, the spatial scales are
systematically larger across the ocean than over the landmasses (Figs. 3, 4, 6A and Tables 1
and 2). This land-sea contrast is also seen in S2S forecast skill (Fig. 6B and Table 2).

Regarding the general spatial difference between land and ocean, we can make a first hy-
pothesis: area of subdailywet events defined as contiguouswet grid points or those recording
deep convection above a given threshold are systematically smaller over continents than over
oceans (Ricciardulli and Sardeshmukh, 2002; Smith et al., 2005; Dai et al., 2009; Trenberth
et al., 2017). It is also well established that the impact of the diurnal cycle and related pro-
cesses, including land-sea and mountain-valley breezes and gravity waves (Yang and Slingo,
2001; Slingo et al., 2003), is stronger across continents and leads to shorter/smaller wet events
across continents than over oceans. An ocean imposes, by definition, an homogeneous large-
scale boundary forcing on the atmosphere, and the diurnal cycle is reduced due to thermal
inertia. An open question is the interaction between the strong diurnal cycle and the modu-
lation provided by various CCEWs (Wheeler and Kiladis, 1999; Lubis and Jacobi, 2015). For
example, the amplitude of CCEWs decreases rather radically from the Gulf of Guinea to the
Central Africa in boreal spring (Kamsu-Tamo et al., 2014). In that context, a strong impact of
larger wet patterns, as tropical depressions or tropical-temperate-trough (TTT) systems (as
those related to the South India Convergence Zone in southeast Africa and to the South At-
lantic Convergence Zone in eastern Brazil), or where the CCEWs strongly affect the intensity
and occurrence of local-scale rainfall may lead to a larger spatial scale of 15-day rainfall anom-
aly. A discrepancy is then possible between spatial coherence and predictability since a larger
daily or subdailywet pattern is not necessarily predictable at the S2S timescale. For example, a
rather large spatial coherence over subtropical southern Africa (Figs. 3A, 6A), especially in

TABLE 2

All Land Coast Open Sea

Year 0.30 0.20 0.31 0.34

Dec.-Feb. 0.33 0.23 0.32 0.37

Mar.-May 0.31 0.21 0.31 0.36

Jun.-Aug. 0.27 0.19 0.30 0.29

Sep.-Oct. 0.29 0.21 0.32 0.32

Notes: Columns 2–5: Spatial averages of the mean skill for weeks 3 + 4 for all tropics,
land, coast (<500 km from land) and open sea (>500 km from land). The areas where
mean rainfall over sliding 15-day windows is always≪ 10 mm during the periods shown
in column 1 are not used in the spatial averages.
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DJF (December-February) (Fig. 3B) does not match with an high predictability (Fig. 7A) dur-
ing this season. In that case, the larger spatial coherence may be primarily an effect of TTTs
generating a large wet pattern at the daily time scale (Macron et al., 2014) but it may be not
really predictable by ECMWFwith a lead time of 2weeks. On the contrary, the combination of
a large spatial coherence and high S2S predictability in ECMWF (Figs. 3 and 6), as the one over
equatorial East Africa in SON (Figs. 3E, 5E, and 6)may primarily reflect a significant impact of
MJO synchronizing efficiently the local-scale rainfall and being predictable at the S2S time-
scale (Pohl and Camberlin, 2006; Berhane and Zaitchik, 2014). The combination of relatively
large spatial coherence with high S2S predictability is also observed over northeastern South
America, and smaller continental pockets such as northern Australia or southern China.

Regarding the temporal modulation of spatial coherence (and S2S forecasts), several hy-
potheses may be emphasized. First, the seasonal modulation of the large-scale source of pre-
dictability could be a trivial source. We have shown here that the spatial coherence peaks and
has high predictability in DJF, in phase with the usual peaks of ENSO events (Rasmusson and
Carpenter, 1982; Ropelewski and Halpert, 1987, 1996). But the minimum spatial coherence is
not observed in MAM at the usual time of shift between warm and cold ENSO events, but
rather in JJA, when the ITCZ reaches its farthest location from the equator and when it is lo-
cated over several landmasses in Central America, and between Western Sahel-Sudan and
Southeast Asia. The exact role of the latitudinal distance of the main heating source from
the equator and of the area of these heating sources on the scale and predictability of atmo-
spheric anomalies remains to be established. A second source may be the role of extreme wet
events that are known as significantly decreasing the spatial coherence and predictability of
seasonal amounts in India (Stephenson et al., 1999; Moron et al., 2017). A third source of sub-
seasonal modulation could be related to the multiscale interaction involving the slow forc-
ings, the basic atmospheric state, and the diurnal cycle across the seasonal cycle. For example,
it has been shown that warm ENSO promotes regional-scale subsidence over the Maritime
Continent, but the interaction between this signal and local-scale rainfall varies over time.
During warm ENSO events, the regional-scale, anomalous, low-level easterlies tend to coun-
teract the usual monsoon flow and thus promote the occurrence of a quiet weather type
(Moron et al., 2015b) characterized by anomalously weak, low-level winds during the core
of the wet season (i.e., DJF). These weak winds emphasize the role of the diurnal cycle that
lead to localized positive rainfall anomalies restricted to small parts of the islands despite the
regional-scale subsidence anomalies (Qian et al., 2010). In that case, the spatial fragmentation
of the rainfall anomaly field occurs during the core of the wet season, when the westerly basic
flow is strong enough to be almost canceled by the anomalous easterlies associated with the
ENSO forcing. Such varying interaction may be possible over other archipelagos as the
Caribbean basin.

Finally, the fact that the spatial coherence usually peaks either near onset or withdrawal
needs further analysis. First, the anomalous delay or advance of regional-scale onset or with-
drawalmay be the primary signal of the peak in spatial coherence around these times.We can
also hypothesize a role played by land-atmosphere interaction: For most of the tropical con-
tinents except for some equatorial areas with very long, or even constant, moist conditions,
the soils are fully dried up during 6–10 months. We can then hypothesize that the onset of the
season over the continents is mostly forced by large-scale atmospheric circulation because
soils cannot provide any local moisture that can trigger deep convection. In other words, a

634 DISCUSSION AND CONCLUDING REMARKS

I. SETTING THE SCENE



tropical landmass at the end of the dry season would wait for the favorable conditions asso-
ciated with a combination of any source of slow and S2S predictability and large-scale phe-
nomena conveying enough moisture to get the first rains. The intense warming of the dry
surfaces lowers the static stability of the lower atmosphere. It is possible that the combination
of local dry and moist instability conveyed by large-scale atmospheric circulation is very ef-
ficient close to the start of the season. The first rains in India are indeed very intense (Moron
et al., 2017). The first wet events either related to local-scale thunderstorms or MCS would
have two effects: (i) moistening the soils and starting the local recycling of water, which is
indeed a positive feedback (Meehl, 1997; Douville et al., 2001, 2007); and (ii) increasing the
heterogeneity of surface temperatures and humidity at the regional scale. As time goes by
during the rainy season, the second effect will progressively vanish due to the different loca-
tions (or tracks) of wet events (from thunderstorms to MCSs) due to atmospheric circulation
(including S2S phenomena). It could provide a partial explanation of the increase of spatial
coherence toward the end of the season, at least over India (Douville et al., 2001, 2007), and
which seems to be rather general across most of the tropical continents. This effect may be
superimposed on the increasing power of ENSO events, at least for the northern tropics.
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1 INTRODUCTION

It can be demonstrated that predictive skill ranges from weeks out to seasons when the
forecast metric involves the statistical treatment of weather variables. Typically, the
range of regional forecast skill increases with the scale of the region considered, as well as
the length of the timewindow used for verification (see Chapter 2). Comparisons can bemade
in terms of averages over forecast lead times, over ensemble members, or, in a probabilistic
sense, using ensemble forecasts. These extended-range forecasts go beyond the limit of pre-
dictability for point forecasts (the value of an atmospheric variable at a particular time and
location). Such forecasts depend on the nature of the variable being forecast and the phenom-
ena dominating its fluctuations. For example, geopotential on a pressure surface is a smooth
field dominated by synoptic-scale (or larger) weather systems and is predictable out to
7–15 days, depending upon the flow configuration. Finer-scale fields, like vorticity, have
shorter predictability limits. For example, Frame et al. (2015) showed that the predictive skill
for the strike probability of cyclonic vorticity centers, within a given radius of locations in the
Euro-Atlantic sector, increases with feature intensity and scale. Precipitation typically has a
much shorter limit to its predictability, owing to its dependence on vertical motion and
convective-scale features in the flow.

There are many plausible sources for sub-seasonal to seasonal (S2S) predictability, includ-
ing slowly varying boundary conditions for tropospheric weather systems: coupling with the
ocean (see Chapters 5 and 9), land surface processes (see Chapter 8), the cryosphere (see
Chapter 10), and the stratosphere (see Chapter 11). However, sub-seasonal regimes are
characterized by large-scale patterns of variability that exhibit internal variability over long
time scales, and they can be oscillatory in nature or characterized by long-range
teleconnections. Consider three contrasting examples:

1. The weather in the tropics and the extratropics is influenced by the phase of the
Madden-Julian Oscillation (MJO). The MJO is the dominant tropical mode of sub-seasonal
variability, which propagates eastward along the equator but has strong remote influences
(see Chapters 5 and 7).

2. Unprecedented extreme summer precipitation events in western Europe have occurred
in the last decade, and they have been associated with quasi-stationary Rossby wave
patterns on the midlatitude jet stream (Blackburn et al., 2008), prompting new theories
of resonant excitation of Rossby modes (Petoukhov et al., 2013; Coumou et al., 2014).

3. The Russian heatwave that occurred in 2010 was associated with a persistent midlatitude
blocking regime (Dole et al., 2011).

In these examples, a distinct dynamical phenomenon is involved, and the properties of that
phenomenon influence the weather in a predictable manner. Here, we focus on isolating os-
cillatory phenomena or slowly propagating modes responsible for enhanced predictability in
the S2S range. In addition to decoupling the phenomena from the data, it is important to gain
insight into their intrinsic dynamical properties and interactions in order to anticipate how
they will contribute to predictability. Also, in the context of a changing climate, if we under-
stand how modes of variability relate to the climate state, we will be able to anticipate how
variability and predictability may vary with climate change.
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Energy spectra in the wave-number space (calculated by transform of spatial distributions
and averaging over many realizations) show a smooth continuum from the planetary to the
kilometer scale, indicating that there is no spectral gap distinguishing large-scale phenomena
from smaller-scale ones. Similarly, frequency spectra exhibit a smooth continuum from sea-
sons to hours. However, statistical techniques that utilize both spatial and temporal informa-
tion, such as the popular empirical orthogonal function (EOF) technique, show that
covariance in time is typically dominated by large-scale patterns of variability. The EOF tech-
nique for a given variablemaximizes the variance, which is explained by a series truncation of
fixed length.

A remarkable property of an EOF mathematical construction is that EOF patterns are or-
thogonal to one another (i.e., the integral over the domain of two different EOF patterns mul-
tiplied together equals zero) and their corresponding time series are orthogonal as well,
making them a complete basis that can be used to project variability from a discrete data
set. Hence, the first EOF is the spatial pattern that explains most temporal variance; the first
and second EOFs form the two-dimensional (2D) orthogonal basis that explains the most var-
iance, and so on for higher terms in the series. The disadvantage of using a purely statistical
approach is that the spatial structures obtained (the EOFs) and their corresponding principal
component time series do not have distinct physical properties; therefore, it is difficult to
anticipate their behavior beyond the limits of the time series examined.

A relatively unexploited approach is to combine conservation laws derived from consid-
eration of atmospheric dynamicswith the orthogonality approach to identify distinct patterns
of variability that can be linked to characteristic physical properties (e.g., an intrinsic fre-
quency or a phase speed). This approach can be called empirical normal mode (ENM) analysis.
Just as an analysis of the shape and physical construction of a bell can be used to anticipate the
frequency at which it will ring when struck, the spatial structure of an ENM can be used to
predict its intrinsic frequency or phase speed from conservation properties. If it can be shown
in general that a small number of such modes dominate S2S variability, as was demonstrated
by Brunet (1994) for the 315 K isentropic surface, a huge reduction in the dimensional size of
the system to be solved will result. Hence, the ENM basis could be the natural one to use to
studywaves andweather regimes in low-order dynamical systems, as discussed in Chapter 6.

Other disturbances may perturb the modes over a wide range of frequencies or stochasti-
cally, which causes the observed frequency spectrum to resemble a continuum. Therefore,
knowledge of their intrinsic frequencies provides potentially useful information. The well-
known fluctuation-dissipation theorem (FDT) describes how the time-average response of
a dynamic system to random perturbations will resemble the structure of the slowest (lon-
gest-time-scale), unforced mode of variability. For example, Ring and Plumb (2008) studied
the response of the Southern Annular Mode to forcing by drawing on the FDT. They used the
principal oscillation pattern (POP) analysis developed by Hasselman (1988) and Penland
(1989), which relies on the calculation of lag covariances to obtain the temporal behavior
of spatial patterns. An advantage of the ENM technique is that lag covariances are not
required because the frequency information stems from the dynamical properties.

A popular approach used in both weather and climate sciences is composite sampling to
study long geophysical time series. With this method, statistical properties (e.g., average
and standard deviation) of similar segments of a time series are examined, and a given seg-
ment is included in the composite if a characteristic event occurswithin it. There is a vast body
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of literature describing such approaches; these studies use atmospheric reanalysis time series
to link weather-climate events (e.g., Molteni et al., 1988; Robertson and Metz, 1989; Cotton
et al., 1989; Vautard, 1990; Ferranti et al., 1989; Lin and Brunet, 2009). For example, Asaadi
et al. (2016a, 2017) used this approach to identify fundamental dynamical and physical pro-
cesses related to hurricane genesis. They showed that the coexistence of an African easterly
wave nonlinear critical layer and a region of a weak meridional potential vorticity (PV) gra-
dient over several days might be a major factor determining whether tropical disturbances
develop into hurricanes. This finding answered the long-standing question of why only a
small fraction of African easterly waves contribute to hurricane genesis. The study showed
a way how S2S variability can modulate the hurricane season.

In general, the utilization of models of varying complexity is also needed for understanding
and identifying sources of predictability. For example, with regard to sub-seasonal variability,
this approach made it possible to demonstrate for the first time a two-way linkage between the
Madden Julian Oscillation (MJO) and the Arctic Oscillation (AO) in a simplified general
circulation model (GCM), numerical weather prediction (NWP) systems, and observations.
These studies have pointed the way toward improving S2S predictive skill and provided
examples of how global teleconnections are influencing regional weather in more complex
modeling systems (Lin et al., 2007, 2009, 2010a; Lin and Brunet, 2011); also see Chapter 7.

A key message arising from this work is that even though the atmosphere is chaotic and
stirring by large-scale waves and eddies generate fine-scale structures in air masses and con-
served properties such as PV, the large-scale dynamics may be closer to linear behavior than
expected. Characteristic spatial patterns that vary slowly but are not periodic in nature are
often treated as oscillations. Teleconnections typically fall in this category. There are many
situations in which interactions between wave phenomena can be identified and explained
mechanistically using linear dynamics. The purpose of this chapter is to provide a theoretical
and statistical framework for studying the sub-seasonal predictability in observational and
model data using these concepts in an integrated manner.

Section 2 introduces the components of the framework, including the notional partition
between a background state and perturbations to it, the concept ofwave activity conservation,
and the implications of conservation formodes of variability. Section 3 outlines the ENM tech-
nique and presents some implications for the behavior of perturbations that can be deduced
from the approach. Several applications of the approach to global atmospheric data are
presented to illustrate the technique and its potential. Conclusions are presented in Section 4.

2 PARTITIONING ATMOSPHERIC BEHAVIOR USING
ITS CONSERVATION PROPERTIES

There are two major aims of the approach to understanding atmospheric variability
presented here:

• Development of a theoretical framework that is capable of isolating a slowly varying
component of the atmosphere that is influenced by slow processes, such as radiative
forcing, and described by well-known equations. This phenomenon may be considered to
be linked with climate.
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• Development of a technique to isolate coherent, dynamical modes of variability from
observed global data and models. These modes have intrinsic properties that can be
deduced from theory.

In spite of the fact that there is a continuum of complex behavior (including nonlinear in-
teractions) across scales, our goal is to take the underpinning theory as far as possible in terms
of isolating processes from observations and representing them in forecasts. The robustness of
the approach will be tested with global reanalysis data. Possible applications that result from
the deductions about forcing of variability, dynamical processes andwave resonance alsowill
be discussed.

Areas where this approach could be useful include the following:

• Anticipating how variability might change with changing climate by increasing our
understanding of the properties of dynamical modes of variability and their dependence
on the background state

• Identifying the physical links between large-scale modes of variability and high-impact
weather that typically occurs on smaller scales

• Using these links to forecast the likelihood of high-impact weather, even though
representing high-impact weather itself in models may be very challenging

• Diagnostics to identify model errors in the representation of dynamics

Examples include the risk of extreme precipitation that is conditional on the phase of the
MJO and persistentmidlatitudeweather extremes associatedwith a particular phase of quasi-
stationary Rossby waves, such as the extremely wet summers that occurred in western
Europe in 2007 and 2012 (Blackburn et al., 2008; de Leeuw et al., 2016), or the Russian
heatwave in 2010 (Dole et al., 2011).

2.1 Partitioning Variability: Background State and Wave Activity

Typically, atmospheric variability is identified through statistical analysis that does not ex-
plicitly use the properties of atmospheric dynamics. A starting point is to identify an anomaly:
it could be some form of readily recognized coherent structure in the atmosphere (such as a
tropical cyclone), but more often it is obtained by subtraction of some form of mean state to
define perturbation fields at every point in the model:

q0 ¼ q"q0 (1)

These perturbations are then analyzed statistically. In such an approach, the definition of
perturbations and their properties clearly depends on the mean state, q0, that is chosen.

The three most popular approaches for defining mean state are as follows:

1. Global average. In this case, the system can be described by the global integral of the
evolution equations, but all the dynamics are contained entirely within the perturbations
that dominate the atmospheric response to forcing (e.g., the global temperature
response to greenhouse gas forcing or volcanic eruption).

2. Eulerian time average (at fixed locations). The mean state can readily be calculated from data,
but it is not a complete solution of the governing equations. Forcing from eddy fluxes
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must be added. All the time dependence rests within the perturbations. One example of
this approach is forecasting a regional seasonal temperature anomaly in contrast to
numerical weather prediction (NWP) of the total temperature field.

3. Eulerian zonal average (average around latitude circles). Although it is often used in dynamic
meteorology, as in the wave-mean flow interaction problem, this approach has a
disadvantage: The mean can vary as quickly as the perturbations because it may be
changed by adiabatic eddy fluxes.

Research in the 1960s, 1970s, and 1980s showed that the evolution of the mean meridional
circulation (a zonal mean, usually time-filtered) depends crucially on the variables chosen to
describe the data (Andrews et al., 1987). In particular, there is a very marked difference in the
mean state deduced by averaging pressure-level data (the easiest coordinate to use in assim-
ilating observational profile data), compared with averaging along isentropic levels (surfaces
of constant potential temperature). The key reason is that potential temperature is materially
conserved following adiabatic motion, so isentropic-coordinate averages partition diabatic
behavior from adiabatic behavior. In contrast, vertical motion across pressure surfaces can
occur through both adiabatic and diabatic processes. A major example is the Ferrell cell,
which appears in the midlatitudes as a thermally indirect circulation in the pressure-
coordinate average, but is absent in the isentropic-coordinate average (Townsend and John-
son, 1985). The origin of this structure is predominantly adiabatic motion along sloping isen-
tropic surfaces within midlatitude weather systems.

An extension of the isentropic-coordinate approach involves using coordinates where two
of the variables are properties that are approximately materially conserved. The most com-
mon example is to use PV in conjunction with potential temperature (e.g., Nakamura,
1995). If motions are adiabatic and frictionless, then the PV and potential temperature cannot
be modified along trajectories. If surfaces of constant potential temperature and PV intersect,
those intersectionsmust be transported around by the fluid asmaterial lines. For example, the
midlatitude tropopause is often described as a particular PV surface (2 PVU), and the position
of the tropopause on each isentropic surface that intersects it is then stirred by the fluid mo-
tion along that surface (Hoskins et al., 1985). However, for conservative motion, mass cannot
be transported across isentropic surfaces or PV surfaces, nor can it be transported across the
intersections between the surfaces. This is a strong constraint on fluid behavior.

In a conceptual sense, we can describe the entire atmosphere in conserved variable coor-
dinates (i.e., a 2D plane with potential temperature and PV as the axes), where motion of at-
mospheric mass is possible only through the action of diabatic or frictional processes. This
framework is described as a modified Lagrangian mean (MLM) (McIntyre, 1980). A true La-
grangian mean would require calculation of the trajectories of all air parcels and some form
of time-averaging along trajectories and over trajectories from similar initial conditions. In
contrast, the MLM state is obtained by using the approximately conserved variables as
markers of air masses, and therefore tracers of fluid motion. This has a distinct advantage.
The time-dependent winds stir tracers so that fine-scale structures are developed through
chaotic advection, and there is a cascade to ever-finer-scale structures in the absence of
nonconservative processes. However, real tracers including chemical constituents, as well
as PV and potential temperature, are subject to nonconservative processes that act to dissipate
the smallest features (halting the scale cascade) and also act to maintain large-scale contrasts
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(so that the entire atmosphere does not become well-mixed). The MLM approach takes ad-
vantage of this property.

Another crucial aspect of introducing a partition between a background state and per-
turbations about that state is that it is necessary to predict the evolution of both compo-
nents using the equations of motion and thermodynamics. First, we will consider the
background state (the evolution of the perturbations will be considered in Section 2.2).
An important way to predict background state evolution is to use the integral conservation
properties of the full state. The definition of the MLM state uses two material conservation
properties. From this, it is possible to deduce that mass cannot cross surfaces of constant
potential temperature (θ) or constant Ertel PV (q) if the flow is conservative (adiabatic and
frictionless). Therefore, the mass enclosed in a volume bounded above and below by two
neighboring isentropic surfaces (Δθ) and laterally by a PV contour (with value Q) must be
conserved:

M Q, θð Þ¼
1

Δθ

ððð
r dAdθ (2)

where r is the density in isentropic coordinates and A is the area enclosed.
Kelvin’s circulation theorem also states that the circulation within any closedmaterial con-

tour on an isentropic surface is invariant if the flow is adiabatic and frictionless. A set of cir-
culation integrals can be defined by the integral of the tangential absolute velocity (in an
inertial frame) around all closed PV contours (i.e., varying Q):

C Q, θð Þ¼
þ

q¼Q
u:dl¼ uth iLQ (3)

where the average tangential speed of the flow around the circuit, huti, must depend inversely
upon the length of the circuit, LQ. Although the mass enclosed by the circuit is invariant, the
length of its boundary depends upon the degree of contortion of the PV contour by the flow.
Therefore, the average speed and local velocity must depend on the shape of PV contours. To
specify the background state and perturbations to it completely, it is necessary to make an
assumption about the shape of the PV contours that define the background state.

One option is to define the MLM background state as zonally symmetric and to require it
to obey the same equations of motion as the full flow. This can be achieved by an adiabatic
rearrangement, in which the mass and circulation enclosed by every PV contour in isentropic
layers are the same as in the full state. The geometry of the contours is made to be
concentric around latitude circles (McIntyre, 1980; Methven and Berrisford, 2015). Using
Stokes’s theorem, the circulation also can be expressed as a volume integral of PV:

C Q, θð Þ¼ 1

Δθ

ððð
rq dAdθ (4)

because the absolute vorticity on an isentropic surface is given by rq.
Consider a thought experiment where there is a distorted polar vortex in an isentropic

layer characterized by uniform high PV (value Q) inside the vortex and zero PV outside.
For illustration purposes, perturbations in isentropic density along the layer are assumed
to be small compared with the mean density, R. In this case, the circulation within the wavy
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contour is approximately RQA,where A is the area enclosed. Therefore, the background state
zonal flow around the vortex edge is

u0 ¼
RQA"Cp

L0
(5)

where L0 is the length of the latitude circle encompassing a vortex of area A that is concentric
about the pole in the background state. It is usual to define an equivalent latitude for the con-
tour such that L0 ¼ 2πa π=2"ϕeð Þ andA ¼ 2πa2(1 " sin ϕe), where a denotes the Earth’s radius.
The area integral of the vertical component of the planetary vorticity (2Ω sin ϕ) within the
background state contour isCp ¼ Ω. 2πa2(1 " (sinϕe)

2). It is subtracted to obtain the zonal flow
in the rotating frame of the Earth. The zonal average of the flow around latitude ϕe is then
given by

u½ & ¼
RQ A"Bð Þ"Cp

L0
(6)

where B is the area within the latitude circle that is external to the disturbed vortex where the
PV is zero. Two properties are immediately apparent. If there is any disturbance, we expect
[u] < u0 because 0 < B < A, and we also can anticipate that the Eulerian zonal average [u] will
fluctuate with the disturbance amplitude, as characterized by the area occupied by low PV
ridges (B).

The flow and density can be obtained by inversion of the PV distribution (Methven and
Berrisford, 2015). In this way, we can define the distribution of dynamical atmospheric vari-
ables and their evolution. Because the PV and θ distributions of the MLM state are zonally
symmetric, the zonal flow obtained from PV inversion must be symmetric as well. Further-
more, because the zonal flow is parallel to the PV contours along isentropic surfaces, there can
be no change associated with advection. Without additional approximations, the solution to
the primitive equations on the sphere in this situation is a state that is in hydrostatic and gra-
dient wind balance. Because the zonal integral of the full state conserves zonal angular mo-
mentum, so must the zonally symmetric background state due to translational invariance in
the zonal direction. The perturbations also must obey a pseudoangular momentum conser-
vation law, as described in Section 2.2.

An alternative would be to define the background as a strictly steady state. In this case, the
time invariance implies energy conservation of the background, as well as global energy con-
servation of the full state, and the perturbations obey a pseudoenergy conservation law.How-
ever, there are several disadvantages to this approach. The background state is not exactly in
balance if the flow is zonally asymmetric, so the PV distribution cannot, in general, be
inverted to obtain the flow and density. Furthermore, except in a special situation where
the flow happens to be parallel to PV contours everywhere, the background could not be
steady without the continuous action of forcing introduced into the evolution equations.

Therefore, a compromise must be made. Either we identify the background state with
zonal symmetry, in which case even stationary waves and zonal variations in climate must
be regarded as part of the perturbation field, or we identify the background with a steady
state (time symmetry), in which case the evolution of the background is not considered
(by definition), and the maintenance of the background also would require a forcing term
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in the equations. Most people would define the term climate using some notional component
that is slowly varying and inherently large-scale, but this approach loses the advantages of
precise symmetry in space or time.

In the analysis of perturbations that follows in this chapter, wewill use a zonally symmetric
background state, but also assume that it evolves much more slowly than the perturbations.
As explained previously, this is approximately true for the MLM state because it can evolve
only through nonconservative processes, and these modify global circulation only slowly.
Fig. 1 illustrates the evolution of the MLM state for the Northern Hemisphere in June
2007, obtained using the equivalent latitude iteration by PV inversion (ELIPVI) method of
Methven and Berrisford (2015).

It is immediately apparent that u0 > [u], and also that [u] varies more rapidly, as predicted
previously. The solid black contour on both plots marks the tropopause (PV ¼ 2 PVU;

FIG. 1 Evolution of the atmosphere on
the 320K isentropic surface calculated
from daily ERA-Interim data for June
2007. (A) MLM background state zonal
flow. (B) Eulerian zonal mean flow.
(C) PV (PVU) in contours; color shading
indicates the meridional PV gradient
(the largest values are pink). (D) Wave
activity (pseudomomentum density) in
color shading overlain on background
state PV contours (CI ¼ 5000 up to
153,000 kg K"1 m"1 s"1 shown in lightest
pink).
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PVU ¼ 10"6 kg"1 s"1 K m2) on the 320K isentropic surface. It is obvious that it migrates pole-
ward over themonth, aside from a brief period in themiddle. Fig. 1C shows theMLM state PV
distribution on the 320K surface. All the midlatitude PV contours are migrating poleward,
which can occur only through nonconservative (diabatic or frictional) processes. The merid-
ional gradient of PV (color shading) also migrates with the tropopause on this surface. This is
the seasonal march of the tropopause.

The mechanism is “vortex erosion” (Legras and Dritschel, 1993), where continuous
filamentation of PV by the breaking of Rossbywaves on the polar vortex edge transportsmass
within PV filaments away from the edge region into the surf zone, where the PV is mixed
(McIntyre and Palmer, 1984). The net result is less mass within the vortex, and thus a pole-
ward displacement. The high PV in the lower stratosphere (polar regions) is maintained by
radiative cooling (Haynes, 2005), but this isweakest at the summer solstice; therefore, the high
PV is not maintained. This occurs until late August, when the cooling begins to strengthen
again and the high PV reservoir builds. The tropopause progresses slowly equatorward dur-
ing the autumn. The time scale of delay behind the cycle in solar insolation, therefore, is re-
lated to the radiative equilibrium time scale of the troposphere (30 days, James, 1994). Fig. 1D
shows a measure of wave activity on the 320K surface, which will be explained in the next
section. It can be seen that the marked variations in the zonal mean are related to variations
in wave activity, as argued earlier in this chapter.

2.2 Wave Activity Conservation Laws

Once we have isolated the background state, the partition is useful only if we also can an-
ticipate the properties for evolution of the perturbations from it. The aim is to find a definition
for wave activity that satisfies a conservation law of the following form:

∂A

∂t
+r:F¼D (7)

which stems from the conservation laws obeyed by the full system combined with those sat-
isfied by the background state due to its symmetry. In Eq. (7),A is a wave activity density, F is
the wave activity flux, and D stands for the effects of nonconservative processes only.
McIntyre and Shepherd (1987) set out a systematic approach to find the conservation laws
for perturbations by combining globally conserved properties (such as angular momentum
or energy) with properties, called Casimirs,which depend only onmaterially conserved prop-
erties. Two key examples are the mass and circulation enclosed by PV contours within isen-
tropic layers, which can be described as functions of the PV and potential temperature (θ)
coordinates.

The method proceeds by defining the pseudo(angular)momentum density as

P¼"r Z+Sð Þ+ r0 Z0 + S0ð Þ (8)

where Z is the specific zonal angular momentum, S(q,θ) is the Casimir density (as yet
unspecified), and the subscript zero refers to the same quantities in the background state.
A central aspect is that there is a whole continuum of conserved properties, but the approach
is to identify the property where the first-order contribution (in wave amplitude) is zero by
construction, therefore ensuring that the resulting wave activity is second order (or higher).
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Haynes (1988) showed the full nonlinear result for the primitive equations on the sphere
which, in the limit of small wave slope, reduces to the more familiar form of wave activity
density (see, e.g., Vallis, 2006, Section 7, for a simple derivation of the first term):

P¼ 1

2
r0Qyη

2" r0u0 cosϕ+
1

2
r0

2q0ηb
2" r0u

0ηb

# $

b

cosϕ
∂θ0b
∂y

(9)

where Qy ¼ r0 cos ϕ∂q0/∂y is the appropriate mass-weighted meridional PV gradient on the
sphere, y ¼ aϕ is the meridional coordinate, and η ¼ " q0/(∂q0/∂y) is defined as the merid-
ional displacement of a PV contour relative to its latitude in the background state. Because the
interior PV gradient of the background state is positive, the first term in Eq. (9) is positive
definite; therefore, it is a useful measure of the amplitude of Rossby wave activity. Also,
southward (negative) displacements give rise to positive PV anomalies through the advection
of PV. The second pseudomomentum term, "r0u0 cos ϕ, is often described as the gravity wave
term because it is absent under quasi-geostrophic balanced dynamics and does not involve
meridional PV fluxes. However, it can be an important player in some large-scale motions.
For example, it is the dominant term in equatorial Kelvin wave activity.

The last term is proportional to the meridional gradient of potential temperature along the
lower boundary. Because 1

2r0ηb
2 is positive definite, the boundary term takes the sign of

r0q0∂θ0b/∂y, which is typically negative (in both hemispheres) and opposes the interior term
(although the terms involving u0 are not sign definite). Note that ηb represents the meridional
displacement of θ contours along the lower boundary in the full state relative to their position
in the background state.

Fig. 2 shows the PV anomaly pattern (color shading) for a particular snapshot of the
atmosphere on an isentropic surface (320K) that intersects the tropopause. The Ertel PV
anomalies are weighted by the background-state isentropic density because this quantity,
r0(q " q0), reduces to the quasi-geostrophic PV anomaly field under the approximations of
QG theory (see Section 12.4 of Hoskins and James, 2014). Because the density is much smaller
at high latitudes in the stratosphere, this downweights the high-latitude negative anomalies;
consequently, the positive anomalies are much more prominent. The positive anomalies are
in tropopause troughs where the air has been displaced far equatorward and the tropopause
is lower than its surroundings. Note that although each trough is distorted differently by ad-
vection, it is clear that there are seven centers of action around the midlatitudes. However,
they are not equally spaced, with the strong anomalies over the eastern United States and
Western Europe being separated the most, and the anomalies over Alaska and the west coast
of North America being closest together.

Overall, the pattern projects most strongly onto zonal wave number 6 and the correspon-
dence is highlighted by overplotting the wave number 6 Fourier component of the PV field.
This serves as an indication that despite the nonlinearities introduced by advection and
Rossby wave–breaking, the dynamics of the large-scale pattern may be interpreted in terms
of wave propagation and interaction. This hypothesis will be tested using the ENM approach,
which is derived by combining statistical analysis of data with wave-activity-conservation
properties.

A similar, but less frequently used, conservation law exists for pseudoenergy. The large-
amplitude derivation (Haynes, 1988) begins with a definition similar to Eq. (8), but using the
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energy density in place of the zonal angular momentum. The pseudoenergy conservation law
is then obtained using the time symmetry (i.e., steadiness) of the background state. Methven
(2013) derived the small-amplitude expression for pseudoenergy, including perturbations
near the lower boundary:

H¼ 1

2
r0 u

02 + v
02

% &
+
1

2

h0
gp0θ

p02" u0
cosϕ

P (10)

where the first term is the kinetic energy of the perturbations, the second is the available po-
tential energy, and the third is called the Doppler term (for reasons which will become appar-
ent), and is proportional to P (including the boundary terms). Note that perturbations are
defined relative to the background state by using Eq. (1), where position is identified in isen-
tropic coordinates (λ,ϕ,θ). For example, background pressure can differ from the full state at
the same position in θ-coordinates.

Even at large amplitudes, the conservation laws imply certain properties for the perturba-
tions. Consider a coherent disturbance that is neither growing nor decaying, but rather
translating primarily along latitude circles. If the background can be defined as both zonally
symmetric and steady, then the disturbance must have both a conserved pseudomomentum
and pseudoenergy. The ratio of pseudoenergy to pseudomomentum gives the translation
speed of the reference frame from which the disturbance appears steady to the observer.
In other words, it defines the phase speed of the disturbance (Held, 1985; Zadra, 2000).
This is the one of the central properties that we will use to characterize modes of variability
in data.

FIG. 2 Snapshot of the atmosphere (00UT
June 23, 2007) on the 320K isentropic sur-
face. The contour lines show PV, Fourier-
filtered to zonal wave number 6 (interval
0.5 PVU), and the shading shows the PV
anomaly, r0(q " q0), from the unfiltered data
overlain (negative anomalies in pink; the
most positive anomalies in red; interval
10"5 s"1). This pattern recurred throughout
June and July 2007, and the trough (positive
PV anomaly) overWestern Europe gave rise
to extreme monthly rainfall (Blackburn
et al., 2008).
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2.3 The Implications of Wave-Activity Conservation for Modes of Variability

The small-amplitude limit of wave activity in Eq. (9) is precisely quadratic in disturbance
amplitude, and this property has been exploited to make deductions about the disturbances
in general and the properties of normal modes of atmospheric dynamics in particular
(Held, 1985):

1. Because the wave activity is globally conserved, its rate of change is zero. Therefore,
if the background state is also steady, disturbance amplitude can grow everywhere only
if the global wave activity is identically zero. From Eq. (9), this leads to the celebrated
Charney-Stern necessary condition for shear instability: The PV gradient must change sign
somewhere within the domain. This argument includes the possibility that the negative
pseudomomentum could be associated with the boundary wave activity in Eq. (9), as first
described for baroclinic instability by Bretherton (1966).

2. Consequently, growing normal modes must have zero pseudomomentum, while neutral
modes could have nonzero values.

3. Because normal modes evolve independently, each conserves pseudomomentum on its
own. Therefore, if the global pseudomomentum of a superposition of modes is to be
conserved, then the normal modes must be orthogonal with respect to pseudomomentum.

4. If the background state is also steady, pseudoenergy will be conserved and conclusions 2
and 3 also pertain to pseudoenergy. Also, because the disturbance energy is positive
definite, from Eq. (10), we can obtain the Fjortoft necessary condition for shear instability:
the zonal flow andmeridional PV gradient must be positively correlated on average across
the domain.

5. As argued in Section 2.2, the phase speed of neutral modes is given by the ratio of
pseudoenergy to pseudomomentum. Considering the small-amplitude quadratic forms,
we see that there are two distinct influences on phase speed:

cp ¼" Hh i
Ph i

¼ u0
cosϕ

P

' (
= Ph i" Eh i= Ph i (11)

Here, the angle brackets denote an integral over the entire domain. The Doppler term in
pseudoenergy gives the rate of advection of the disturbance by the zonal flow, even in the
presence of shear. Because the wave frequency can be defined as ω ¼ cpk, the Doppler term
represents the shift in frequency associated with zonal advection by the background flow. Its
sign depends only on the sign of the background zonal flow weighted by locations where the
wave activity is largest. The second term describes propagation relative to the zonal flow and
is proportional to the disturbance energy E. Because the energy is positive definite, the direc-
tion of propagation depends on the sign of the mode’s pseudomomentum.

Note that it is not immediately obvious how to predict the phase speed of growing normal
modes because they must have zero pseudomomentum and pseudoenergy. However, a
solution to this problem was obtained by Heifetz et al. (2004), who used wave activity
orthogonality to recast the growing and decaying normal modes obtained from complex
conjugate normal mode solutions in terms of the linear superposition of a pair of counterpro-
pagating Rossby waves (CRWs). By construction, CRWs are orthogonal with respect to
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pseudomomentum, and therefore, one CRW has positive and the other CRV negative
pseudomomentum such that their sum is zero when only the growing normal mode is pre-
sent. Therefore, they describe disturbances that propagate in opposite directions (relative
to the flow where wave activity is large). However, they are not orthogonal with respect
to energy that can grow or decay as a CRW pair evolves.

They are used to give a mechanistic explanation for baroclinic or barotropic instability
(a generalization of the Eady model for any unstable parallel zonal flow). The growth rate
of normal modes can be expressed in terms of the energy of interaction between the CRWs.
Perhaps most important, an expression for the phase speed of a growing normal mode is
obtained as the average of the intrinsic phase speeds of the two CRWs:

cNM ¼"1

2

H1h i
P1h i

+
H2h i
P2h i

# $

where hP1i ¼ " hP2i in the CRW construction.

3 THE ENMAPPROACHTOOBSERVEDDATAANDMODELSAND ITS
RELEVANCE TO S2S DYNAMICS AND PREDICTABILITY

One way of diagnosing and characterizing the atmospheric S2S variability is to use a phase
space approach,which has been shown to be very valuable in mathematics, physics, and atmo-
spheric dynamics. The phase space of a geophysical fluid is a space where the state of the flow
at a given time corresponds to one unique point. Usually, the phase space for a geophysical
fluid can be represented by a steady basic state and superposed wave disturbances that are
each represented individually as an oscillation in a 2D-phase plane (with characteristic am-
plitude and phase). In a nonlinear flow, this decomposition is nonunique (as discussed in
Section 2.1), and the phase space trajectory can be complicated.

Here, we will focus on the evolution of waves and the insights that come from the small-
amplitude limit for disturbances where linear wave theory applies. This is motivated by the
prevalence of wave propagation on larger scales (e.g., Fig. 3), even though stirring by the large
scales results in a continuous cascade of PV to smaller scales and the wavelike patterns asso-
ciated with teleconnections. Even with such a drastic assumption, the proposed ENM diag-
nostic framework is very insightful and can be applied often to various type of flows with
success, including nonlinear flow. Evidence from examples will be discussed next.

In general, waves transfer energy and momentum in flows through dynamical processes
that obey the conservation laws introduced in Section 2. In Section 3.1, we will show that con-
servation laws constrain fundamentally the space-time characteristics of waves and are cen-
tral to normal mode theory. For a given dissipative and stochastically forced flow, the
conservation laws can be used to augment the physical relevance of the statistical principal
component analysis (PCA) and its associated EOFs. In the context ofwaves relative to a steady
basic state, if PCA is performed using wave-activity conservation laws, we demonstrate that
the EOFs are the normal modes obtained from the linear wave theory.

The latter result permits the development of a statistical and empirical diagnostic frame-
work with a built-in linear wave theory interpretation. It has been named ENM analysis by
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Brunet (1994). In circumstances when the phase speeds obtained from ENM properties are
consistent with the phase speed of waves observed by tracking (the ENM phase speed con-
dition; see Eq. 19), we also will show in Section 3.1 that some aspects of ENM analysis are still
conceptually and quantitatively relevant to stochastically forced and damped nonlinear
flows. In Section 3.2, we will discuss the potential of ENM analysis for diverse applications,
and in Section 3.3, we will focus on the ENM analysis of S2S variability.

3.1 ENMs: Bridging Principal Component, Normal Modes,
and Conservation Laws

In Section 2.2, we discussed two well-known conservation laws for wave activity in geo-
physical fluid dynamics (Haynes, 1988). These wave activities are the total pseudoenergy for
a steady basic state and the total pseudomomentum for a zonal symmetric basic state. When
the basic-state wind is uniform, pseudoenergy and pseudomomentum reduce to total energy
and total enstrophy, respectively, but shear in the basic state flow changes the dynamics
fundamentally.

In the past, the quest for optimal bases has given rise tomany independent rediscoveries of
what is now known as EOF space-time biorthogonal expansions. A historical review of this topic
is given by Sirovich and Everson (1992). The physical interpretation in terms of normal mode
bases was explored by North (1984) for an atmospheric linear dynamical system with normal
modes satisfying a self-adjoint equation. This work was extended by Brunet (1994) to normal
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FIG. 3 The structure of the leading ENM pair for zonal wave number 6 during June and July 2007. (A) The am-
plitude squared of the ENM is its pseudomomentum structure, which is positive in the interior and negative in the
boundary domain, which spans the space between the wavy and background state θ contours on the lower boundary
(for each θ value). ENM is normalized such that the integral of amplitude squared over the latitude-θ section is unity
(units rad"1 K"1). (B) The phase of the meridional air parcel displacement associated with the ENM pair (radians/π).
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modes of the primitive atmospheric equation for sheared flows (in general not a self-adjoint
problem) using the conserved pseudomomentum and pseudoenergy wave activities. In this
more general case, the ENMs are not statistical eigenfunctions of a covariance matrix, but
rather a solution of a generalized symmetric eigenvalue problem.

The statements about dynamical systems, normal modes, phase speed, and conservation
laws discussed here can be found in Brunet (1994), Brunet and Vautard (1996), and Charron
and Brunet (1999). For the rest of this discussion, wewill assume that a zonal basic state exists,
ensuring that pseudomomentum and pseudoenergy are conserved for an unforced and
inviscid flow.

Consider a nonlinear dynamical system expressed in the following general form:

∂X

∂t
¼G Xð Þ (12)

whereX is the state vector (e.g., the distribution of variables required to define the flow state),
and G(X) represents a dynamical operator that gives the rate of change of the state given the
current state. If we linearize around a time-independent zonal basic state X0 solution of
Eq. (12), we obtain

∂X0

∂t
¼ iG0X

0 ¼ iHAAX
0 (13)

where HA and nonsingular A are time-independent Hermitian operators if and only if
WA ¼ hX0,AX0i is a conserved quantity (Charron and Brunet, 1999). This was demonstrated
explicitly for the shallow-water model on the sphere for Rossby and gravity waves in Brunet
and Vautard (1996). For the rest of this discussion, we will assume that WA is the total
pseudoenergy.

The bracketed term hf,gi ¼
Ð
f †gdv represents an integral that can be over a line, area, or

volume. The specific example is given by Eq. (10) for the dynamics described by the primitive
equations on the sphere, where the state vector would need to be described by X0 ¼ (u0,v0,p0,
r0,η), including the perturbations in the interior and appearing in the lower-boundary terms,
and the bracket represents the volume integral over the atmosphere.

Considering the normal mode expansion, in which each Zn is a monochromatic wave
solution of Eq. (13), then

X0 ¼
X

n

an tð ÞZn ¼
X

n

an,0e
iωntZn

ωnZn ¼HAAZnwhere Zn,AZmh i¼ αnδn,m and ana∗m ¼ δnm (14a)

in which αn is the total pseudoenergy of the normal mode Zn, an. ωn is the natural frequency of
the normal mode, and the overbar is the time average. This is a generalized eigenvalue prob-
lem, and because A and HA are Hermitian operators and A is nonsingular, we can show for a
space of finite dimension that the set of {Zn} forms a complete orthogonal basis under the
pseudoenergy metric MA ¼ hf,Agi (Bai et al., 2000). Hence, the normal mode expansion pro-
vides a full solution to the initial value problem associated with Eq. (13). The normal modes
span a phase plane in phase space. They represent propagating waves except for stationary
waves (i.e., ωn ¼ 0).

80 4. IDENTIFYING WAVE PROCESSES ASSOCIATED WITH PREDICTABILITY

I. SETTING THE SCENE



If we linearize around a zonally symmetric basic-state X0 solution of Eq. (12), then
pseudomomentum WJ ¼ hX0, JX0i is conserved and normal mode solutions satisfy:

ωnYn ¼HJJYnwhere Yn, JYmh i¼ βnδn,m and ana∗m ¼ δnm (14b)

where βn is the total pseudomomentum of the normal mode Yn. Note that the normal modes
{Zn} and {Yn} are identical and form a unique basis if the eigenvalue pairs (αn,βn) are
nondegenerate. We will assume for the rest of this discussion that this is the case. It follows
from the framework of complete ensemble of commutating operators (CECO), where a set of
many operators have the same eigenvectors if they all commute and their eigenvalues are de-
termined uniquely for each eigenvector (Cohen-Tannoudji et al., 1973). For the primitive
equations on the sphere with pseudoenergy and pseudomomentum conservation laws, we
can write:

WA ¼ cWJ, and hence, for each normal mode, we have

cn ¼
Z0
n,AZ

0
n

* +

Z0
n, JZ

0
n

* + (15)

where c is the mean phase speed of the flow (Held, 1985; Zadra, 2000), as discussed in
Section 2.2 with respect to Eq. (11). This relationship also holds true for modified wave activ-
ities (by adding a divergent term that is conserved by construction) for individual isentropic
surfaces that do not intersect with the surface (Zadra, 2000).

In the geophysical context, it is often more representative of observed flows to have a
damped and stochastic forced model (for more on this, see Chapter 6). For the sake of sim-
plicity, we will assume in the following that we have already decomposed Eq. (13) for each
zonal wave number k.

Then the forced-dissipative version of Eq. (13) for each zonal wave number (ignore the
subscript) can be expressed in the following form:

∂X0

∂t
¼ iHAAX

0" γX0 + ε (16)

where γ is a Raleigh-damping coefficient, and ε is a random forcing that is uncorrelated in
time (e.g., Wiener process) and should be square-summable in space.

If we expand Eq. (16) in terms of normal modes {Zn}, the complete time series is

X0 x, tð Þ¼
X

an tð ÞZn xð Þ

and the Fourier transform of the time domain in the equation yields the following coefficients:

ean ¼
eεn

i ω"ωnð Þ+ γ
where αneεn ¼ Zn,Aeεh i (17)

where the Fourier transformed variables, eg ωð Þ¼ 2πð Þ"1 1
T

ÐT=2

"T=2

g tð Þe"iωtdtand αn, are defined by
Eq. (14a).

When γ ¼ 0, a solution for Eq. (17) exists only if the Fredholm alternative (Riesz and
Sz-Nagy, 1953) is satisfied; hence, eεnjω¼ωn

¼ 0 for all n.
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If the pair (αn,βn) as defined in Eqs. (14a), (14b) is nondegenerate, then in the limit T ! ∞
and using Eqs. (14a), (17), we can show that if A and B are nonsingular and we have a time
seriesX0 solution of the stochastically forced and damped dynamical system (Eq. 16), then for
each zonal wave number k:

CJXn ¼ βnXn andCAXn ¼ αnXnwithωn ¼ k
αn
βn

(18)

where {Xn} are the normal modes of Eq. (13) and the covariance matrix elements are defined
by C x, x0ð Þ¼X0 xð ÞX0 x0ð Þ∗ . A normal mode Xn obtained using a covariance matrix approach as
in Eq. (18) is named an ENM.

The phase speed relationship (Eq. 15) implies that by knowing the X0 time series, we have
completely solved the initial value problem of Eq. (13), including its nonhomogeneous
damped version with stochastic forcing (Eq. 16). This is possible because the unforced and
nondissipative evolution equation (Eq. 13) is a completely integrable Hamiltonian system,
which for a given truncation N has 2N constants of motion. Associated with the complete
ENM basis {Xn}, we also have a complete orthonormal basis (i.e., principal components) in
time {an}, where ana∗m ¼ δn,m. It means that each individual wave/ENM of a different type
(e.g., gravity and Rossby waves) obtained through an ENM analysis will span biorthogonal
subspaces in space and time with a clear dynamical interpretation.

ENM analysis permits, in practice, the ability to diagnose a specific wave spatial structure
and its time evolution, which is not contaminated by other waves present in the flow. In par-
ticular, it will efficiently partition fast and slow modes without using any time-filtering tech-
nique. In Brunet and Vautard (1996), this has been shown to be very advantageous relative to
a standard EOF analysis for simulated linear and nonlinear upper-tropospheric barotropic
flows. It should be noted that other statistical techniques are available for studying and
predicting atmospheric oscillations in the presence of damping and stochastic forcing.
Two examples are the principal oscillation pattern (POP) method (Penland, 1989) and the
constructed analog (CA) method (Van den Dool, 1994). They have been successfully used
in long-range forecasting (e.g., Van den Dool and Barnston, 1995).

These two statistical methods rely fundamentally on temporal lag techniques for a given
variable time series in which a linear regression equation is used to predict future values based
on both the current variable values and the lagged (past period) values. It can be readily
shown that, in general, these two are mathematically equivalent. The ENM analysis is funda-
mentally different because it is not based on time-lag correlation, but only on the existence of
conserved wave activities. This makes ENM analysis very robust when dealing with noise.
For example, the ENMs derived from Eq. (19) are not affected at all by a random reordering
of the time series. This is not the case for POP and CA analyses because the covariance matrix
depends only on time-averaging operations and hence is invariant under a reordering of the
time series.

Of course, when performing an ENM analysis in practice, we need to assess the validity of
the underlying normal mode assumptions for a given time series, such as the choice of basic
state, conservation laws, and small-amplitude wave activities. The small-amplitude approx-
imation can be relaxed by using finite-amplitude wave activities, but as discussed in Brunet
(1994), the interpretation of the ENM analysis results is definitely more problematic. With the
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exception of the research done by Brunet (1994), all ENM analyses to date have been
performed using small-amplitude wave activities.

In general, we can objectively falsify the effectiveness of ENMs at representing the dynamic
of atmospheric flows (whether simulated or observed). It can be done in the context of CECO
theory and using temporal lag techniques, as in CA and POP analyses. One important aspect
of such an evaluation methodology are the ENM phase speed conditions:

Ωn ¼"i
da

dt
a∗ ¼ k

Xn,AXmh i
Xn, JXmh i

¼ωn (19)

whereΩn are the observedmean natural frequencies. As discussed previously, these relations
are necessary to demonstrate that an atmospheric flow is an integrable dynamical system. In
practice, the principal components are generally not monochromatic, but the ENM phase
speed conditions require that for each ENM, the observed mean natural frequency Ωn (de-
rived from the principal component time series) is equal to its intrinsic natural frequency
ωn. These phase speed conditions have been verified within statistical estimation errors
(e.g., dependence on the length of time series) for a wide variety of geophysical flows span-
ningmesoscale to planetary scales and have provided significant insights formany problems.

3.2 ENM in Applications Relevant to Predictability Across Time Scales

First, we will illustrate ENM analysis in application with a relative simple and explicit ex-
ample taken from (Brunet and Vautard, 1996): the shallow-water model on the sphere in
spherical coordinate. In many aspects, this model is relevant to the S2S prediction problem.
It is a global barotropic model that supports Rossby, Rossby-gravity, Kelvin, and gravity
waves typical of the midlatitude and tropical-upper-troposphere regions. Then for the
ENM analysis of the evolution equation (Eq. 12), we have the following perturbation state
vector for a given zonal wave number s:

X0 ¼X"X0 ¼

u0

v0

σ0

P0

0

B@

1

CA with basic stateX0 ¼
u0
0
σ0
P0

0

B@

1

CA (20)

where u0, v0, σ0 and P0 are the nondimensional zonal wind, meridional wind, height, and PV
perturbations, respectively. The pseudoenergy A and pseudomomentum J operators are
explicitly

A¼ 1

2

σ0 0 u0 0
0 σ0 0 0
u0 0 1=FR 0

0 0 0 "u0σ20
dP0

dϕ

0

BBBBBB@

1

CCCCCCA
and J¼ cos φð Þ

2

0 0 1 0
0 0 0 0
1 0 0 0

0 0 0 " σ20
dP0

dϕ

0

BBBBBB@

1

CCCCCCA
(21)

where FR is the Froude number and ϕ the latitude. Hence, from the considerations of the pre-
vious section, and with the sole knowledge of these operators, we can perform an ENM

833 THE ENM APPROACH TO OBSERVED DATA AND MODELS

I. SETTING THE SCENE



analysis for a given shallow-water model time series X by solving the generalized eigenvalue
problem (Eq. 18).

Note that the uniqueness and completeness of the ENM basis depend only on the rank of
these two matrices (and of the covariance matrix). From their determinant we can show that
this tantamount to have bounds a and j for which, for any latitude,

0<
σ20
dP0

dφ

< j and 0<"u0σ30
dP0

dφ

σ0
FR

"u20

# $
< a (22)

If they are not satisfied, the first and second conditions are related to the Charney-Stern and
Fjortoft necessary conditions for shear instability, respectively, as discussed in Section 2.3. But
the second condition also states that the wind should not match the local value of the gravity
wave phase speed. The second stability criterion was first derived in a somewhat different
manner by Ripa (1983), and it guarantees that there is no unstable normal mode. In the pres-
ence of unstable normal modes, the ENM analysis is still valid, but it needs a different
approach, along the line explained for CRWs in Section 2.3. Of course, the unstable ENMs
also can be obtained directly from the kernel of the pseudomomentum generalized eigen-
value problem (Eq. 18) (Martinez et al., 2010a).

Using the spectral shallow model on the sphere, Brunet and Vautard (1996), the ENM
phase speed conditions (Eq. 19) were tested for linear and nonlinear regimes and variousmet-
rics (e.g., pseudomomentum versus the square of height) for typical Northern Hemisphere
winter jets. The EOF diagnostics based on different metrics has clearly shown the advantage
of using wave activities.

The time and zonal mean basic state of the time series was also the best choice. It minimizes
the perturbation variance, and hence it is the closest to the small-amplitude limit. Of note, the
phase speed conditions were satisfied for sheared, low-frequency Rossby waves in the linear
regime only, for a relatively high spectral resolution of T100 compared to typical climate
model resolutions in the 1990s (T32-64). The modes of variability of the shallow-water model
with a realistic radius of deformation were well tuned only for sufficiently high spectral
resolution. This example highlights the potential of ENM analysis as a suitable tool for
assessing the numerical accuracy of dynamical processes in climate and prediction models.
Zadra et al. (2002b) extended the method tomulti-layer data from a primitive equationmodel
and applied it to the Canadian Global Environmental Multiscale (GEM) NWP model
dynamical core.

An important finding is that ENMphase speed conditions were verified even for nonlinear
simulations with wave-breaking events (Brunet and Vautard, 1996). This indicates that over a
sufficiently long period of time, the cumulative effect of nonlinear terms can be considered
negligible when verifying the phase speed conditions, even if the ENMs are interacting
nonlinearly. For example, although Rossby wave–breaking and the complexity of the flow
results in the stretching and folding of individual troughs in different ways in Fig. 2, the prop-
agation of the underlying wave pattern of PV anomalies is quantitatively predicted by
Eq. (19). Therefore, ENMs are in some respects dynamically relevant to nonlinear problems.
The framework for studying nonlinear interaction of normal modes in sheared flows and
their relation to wave activities has been established in Vanneste and Vial (1994). This may
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provide an avenue for studying the nonlinear interactions of ENMs with applications to the
study of the predictability and dynamical processes of the S2S phase space and could pave the
way for the empirical application of different chaos theory techniques to identify routes to
chaos (e.g., KAM theory and period doubling).

In the literature so far, ENM phase speed conditions have been verified when analyzing
global atmospheric North Hemisphere atmospheric variability on the 315K isentropic surface
(Brunet, 1994), shallow-water-model Rossby waves (Brunet and Vautard, 1996), multi-layer
NCEPwinter reanalyses (Zadra et al., 2002a), simulated gravity waves in Charron and Brunet
(1999), and for hurricane vortex, Rossby wave dynamics (Chen et al., 2003; Martinez et al.,
2010a,b, 2011). In these studies, the ENM phase speed conditions were demonstrated within
reasonable margins for a large portion of the studied wave activity variances.

Most recently, Methven et al. (2018) have extended the technique to the stratified problem,
including the lower boundary, which introduces considerable complexity in using reanalysis
data; but it is important due to the negative term introduced in the pseudomomentum and the
corresponding term in pseudoenergy. In other words, the propagation of the potential tem-
perature wave along the lower boundary modifies the phase speed of baroclinic waves, as is
most familiar in the Eady and Charney models of baroclinic instability (Heifetz et al., 2004).
Fig. 3 illustrates the structure of the largest amplitude ENM at zonal wave number 6 obtained
from ERA-I data for June–July 2007. Note that in the calculation, the perturbations are defined
relative to theMLMbackground state calculated byMethven and Berrisford (2015). Themode
is propagating, and thus described by a pair of ENM structures in quadrature.

It has the largest amplitude in the upper troposphere and the lower stratosphere (strad-
dling the tropopause) and a distinct negative pseudomomentum contribution associatedwith
the boundary terms (here seen sloping along the lower boundary of the background state).
Therefore, it is a baroclinic wave, although it has much stronger interior wave activity than
the boundary term, and so it does not have zero pseudomomentum, as would be expected for
a baroclinic growing normal mode. Its phase changes across the midlatitude jet in the tropo-
sphere, which is a signature of the different wave-breaking directions on either side of the jet.
Evidence for this can be seen in Fig. 2 in the Fourier-filtered PV field. This particular structure
meets the ENMphase speed conditions within a fewmeters per second (Methven et al., 2018).
These studies clearly show the relevance of combining PCA, wave activities (including their
associated Elliasen-Palm flux), and normal mode theory to diagnose atmospheric dynamics.

The advantage of the biorthogonal ENMs is evident: It permits a systematic approach for
examining the statistics of data and exploring whether a modal perspective is dynamically
relevant or not. The ENM phase speed conditions provide important nontrivial information
on the dynamic processes (e.g., gravity versus Rossby waves) found in each of the subspaces
spanned by the ENMs, as in hurricanes, where there is no separation of time scales between
gravity and vortex Rossby waves due to a finite Rossby number (Chen et al., 2003). Similarly,
the technique can be used to distinguish among types of wave modes when they are not
separated, in terms of spatial scale. In this regard, it holds promise for addressing tropical
dynamics in particular.

Falsification of the ENM phase speed conditions can happen for the following reasons: (1)
nonlinear effects cannot be neglected; (2) the damping is not Raleigh or stochastic forcing is
not Wiener; (3) the wave variability is not well simulated in the model; and (4) some dynam-
ical and physical processes are not represented properly in the wave activities. The latter can
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be sensitive to the basic state choice, as demonstrated in Brunet and Vautard (1996) with a
shallow-water model. In some situations (e.g., baroclinic development), the important contri-
butions of the boundary terms have been neglected (see Zadra et al., 2002a), as pointed out by
Methven (2013).

The ENM approach can be used to study the response of a conservative dynamical system
to arbitrary forcing. Nowadays, this is a key issue in climate science. According to Cooper and
Haynes (2011), a study about the FDT, the response of a conservative dynamical system to
steady forcing applied for t > 0, and in the limit, t! ∞ would be equal in the ENM frame-
work to δx ¼ " T"1δf, where T is simply the diagonal matrix composed of the intrinsic nat-
ural frequency of the ENMs. The advantage relative to the POP approach is that the response
can be studied individually for each biorthogonal ENMwith a direct physical interpretation.
Of course, one of the focuses of climate studies should be on low-frequency dynamical pro-
cesses like S2S variability.

3.3 ENM Application to the Atmospheric S2S Variability

In Brunet (1994) and Zadra et al. (2002a), large-scale atmospheric variability was shown to
be spanned by ENMs, with intrinsic natural oscillation periods ranging from days to months.
The ENM phase speed conditions were verified for almost all the wave activity except for
some specific ENMs. For example, Brunet (1994) showed that the ENMs associated with At-
lantic blocking did not satisfy the ENMphase speed conditions, possibly due to the nonlinear
transient feedback and omission of boundary terms in the wave activities.

In Brunet (1994), the S2S North Hemisphere variability on the 315K isentropic surface for
24 winters was characterized quantitatively and empirically within an ENM framework.
Fig. 4 shows the distribution of the total observed wave activity per day as a function of
the ENM intrinsic natural oscillation period (ωn ¼ cnk) for various truncation thresholds.
Eight discretelike ENMs were identified, which show a finite contribution to the total wave
activity (over 1% individually), with distinct intrinsic periods from 14 to 200 days spanning
the S2S time range. They represent around 20%–30% of the total wave activity and are closely
linked to large-scale patterns like the AO and Atlantic blocking.

The rest of the wave activity (70%–80%) is represented by a continuous spectrum of ENMs
with a peak around 3–5 days associated with transients, storms, and baroclinic waves (diag-
nosed as very distinct propagating ENM pairs, as shown in Fig. 3). The discretelike ENM
pairs were shown to be relatively predictable, with a large e-folding time of 3–5 days. Here,
the e-folding time is defined for each ENMpairs as the time average of its amplitude tendency
(growth or decay) in the phase plane (Brunet, 1994), which is a goodmeasure of predictability.
The continuous spectrum has e-folding times of less than 3 days, which is consistent with pre-
dictability theory for baroclinic wave activity (Leith, 1978). The eight discretelike ENM pairs
partly control the evolution of the continuous spectrum and the distribution of high-impact
weather because they are large-scale features dominating the advection of PV. They are good
candidates to span the phase space of a low-order model of S2S variability (see Chapter 6).

For example, Fig. 5 shows the phase-space-probability density of the zonal wave number 2
ENM pair, with an intrinsic period of 35 days for the winters from 1963 to 1987. An asymmet-
ric bimodal signature with one localized small peak and one wide peak can be clearly
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observed. A composite of wave activity maps shows that the small peak is associated with
Atlantic blocking. This is confirmed in the same image by the probability densities of the
zonal (ZO) and Atlantic blocking (BL) weather regime events obtained by Vautard (1990),
where the ZO event density has a pattern similar to the main structure of the ENM
bimodality.

It is noteworthy that the ZO and BL densities in Fig. 5 show a strong amplification of the
ENM pair wave activity for the BL relative to ZO regimes, with an approximate π phase
change in the amplitude that can be readily observed by noting that the BLmaximum density
is farther from the phase-plane origin than the ZOmaximumdensity. This is observed for two
other discretelike ENM pairs, and is typical of a resonant process. The presence of weakly
unstable hemispherical normal modes in the slow variability is predicted by the wave-mean
flow interaction theory of Charney and DeVore (1979); also see Chapter 6. They proposed
orographically induced linear and nonlinear resonance mechanisms to explain phase locking
and multiple equilibria of weather regimes.

It is recognized that the North Atlantic Oscillation (NAO) temporal variability spans many
time scales and is subject to a wide range of atmospheric and oceanic forcing. For example,
Molteni et al. (2015) has shown extratropical teleconnections with the Indo-Pacific region that
have common atmospheric responses associated with different forcing spanning weeks to
interdecadal time scales, which is consistent with resonant behavior. More in-depth studies
of discretelike ENM phase space, weather regimes, and resonance mechanisms are needed to
make progress on these S2S issues. One step toward this objective was achieved by the three-
dimensional (3D) ENM analyses of the observed and simulated global atmosphere by Zadra
et al. (2002a,b). The focus of Zadra et al. (2002a) was not S2S variability per se, but the upper-
troposphere and lower-stratosphere observed variability along the tropopause. It has been
shown that a large part of the wave activity around the tropopause was spanned by ENMs
with intrinsic oscillation periods of less than 14 days, and this can be explained using the
theory of quasi-modes (Rivest and Farrell, 1992).

Quasi-modes are defined as superpositions of singular modes that are sharply peaked in the
phase speed domain but have large-scale (delocalized) structures, as opposed to singular
modes, which represent sheared disturbances advected by the flow. They are often reminis-
cent of monochromatic discrete modes (neutral or unstable) that have been displaced into the
continuous spectrum by the modification of the wind basic state (e.g., addition of wind shear)
or dynamical processes like f-plane versus β-plane (Zadra, 2000). Quasi-modes are often
weakly damped by critical layer stirring (Briggs et al., 1970; Schecter et al., 2000, 2002; Schecter
and Montgomery, 2006; Martinez et al., 2010a) and maintain their energy for relatively long
periods. They are easily excited by external forcing due to their large spatial structure, which
is typical of discrete modes. They are not easily computed or identified by numerical or an-
alytical methods (e.g., identification of relevant Landau poles), but they have been readily
identified by ENM analyses in hurricane simulation (Martinez et al., 2010a) and atmospheric
reanalysis (Zadra et al., 2002a) diagnostics. The latter study was able to identify leading
modes with dipolar pressure patterns along the summer hemisphere tropopause that have
well-defined phase speeds and decay rates of a few days, which can be explained by the the-
ory of quasi-modes (e.g., wave number 5 with phase speed of 12 m/s and 3-day decay rate).

It is quite possible that the eight discretelike ENMs spanning the S2S variability in the 2D
barotropic study of Brunet (1994) are quasi-modes. Further studies are required to confirm
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this hypothesis, and these will probably need to be 3D ENM analyses because Zadra et al.
(2002a,b) have identified a relatively larger number of discretelike ENMs with intrinsic pe-
riods of over 14 days spanning the S2S variability (e.g., more than a half-dozen for the zonal
wave number 1 alone).

The ENM also could be used in the atmosphere-ocean S2S context where, in general,
pseudoenergy is expected to be conserved, but not pseudomomentum. For example, the latter
is not conserved when an oceanic basin has irregular boundaries because the zonal symmetry
is broken. The ocean ENM diagnostic could be used to look at the MJO atmosphere-ocean
coupled problem, with the ocean limited to the mixing layer. This would be the first step to-
ward looking at ENMs of the ocean-atmosphere with sub-seasonal to multidecadal time
scales. It is noteworthy that wave-activity study of the ocean is almost nonexistent except
for the work of P. Ripa (Shepherd, 2003).

4 CONCLUSION

The first important objective of this chapter was to tackle the problem of diagnosing S2S
atmospheric variability by splitting the diabatic and adiabatic flow components using funda-
mental principles from geophysical fluid dynamics. This was shown to be possible by taking
advantage of the MLM theory based on the conservation of PV and potential temperature.
The MLM partitioning of S2S variability in terms of slow diabatic processes, such as radiative
forcing, and large adiabatic dynamical processes leads to the second important goal of our
proposedmethodology, which is to be able to extract dynamicalmodes of S2S variability from
observed global data and model simulations with coherent space-time characteristics using
fundamental properties that can be deduced from theory.

We demonstrate in this chapter that ENManalysis, with its built-in characteristics based on
conservation laws, PCAs, and normal mode theory, provides an appropriate theoretical
framework. ENM analysis is able to frame S2S scientific studies suitably and bring new per-
spectives (e.g., partitioning the S2S variability in fast and slow modes based on the ENM in-
trinsic phase speed). For example, the use of the ENM technique to date has revealed that a
small number of structures dominate the observed variability at lower phase speeds than
baroclinic waves. However, there are many unanswered questions regarding the nature of
the modes. Are the ENM structures consistent with the structure of normal modes? Can
we confirm or rule out their quasi-modal interpretation? Are they robust in a very long time
series? The background state has a strong seasonal variation, but the calculation assumes a
steady background, so should the modes be obtained for each season separately? What is
the role of boundary wave activity?

Once the discretelike ENMphase space spanning the S2S variability has been characterized
properly, wewill be well positioned to address the S2S predictability problem. To address the
predictability challenges, we need to understand the following points better:

• The extent to which a low number of distinct modes describe variability on S2S time scales
and the robustness of those structures from year to year.

• How these discretelikemodes interact with one another, with faster disturbances, andwith
the background state through nonlinear interactions. The role of physical mechanisms,
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such as wave resonance, multiple equilibria, attractor sets, and stable and unstable limit
cycles (see Chapter 6 for more on this topic), is also important.

• The role of the slow modes in predictability on S2S time scales.
• How the ENM approach can be used to examine tropical-extratropical interactions and the

teleconnections that result in longer-term predictability in the extratropics.
• The degree to which ENMs present a reduction of atmospheric dynamics in terms of the

average response of the system to stochastic and other forcings and use the phase space of
ENMs to understand changes in S2S variability with climate change, including weather-
regime responses to climate change (structure and occurrence), by performing
intercomparisons of global and regional climate models as recommended by Palmer
(1999).

Using statistical and theoretical research programs together will improve our knowledge
of the S2S forecast problem and point the way toward exploiting new sources of predictabil-
ity. For example, Brunet (1994) and the subsequent applications of ENM analysis to the ob-
served and simulated global atmosphere (Zadra et al., 2002a,b) provided the guidance
needed to look at the problem of theMJO and theNAO two-way interaction problem through
teleconnections (Lin et al., 2009) and its impact on NWP skill (Lin et al., 2010a; Lin and Wu,
2011). As in the previous example, to make future advances in the S2S forecast problem, we
also will need to use a hierarchy of GCMs of increasing complexity to gain the necessary
dynamical and physical insights (e.g., Derome et al., 2005; Lin et al., 2007).

We believe that the S2S forecast problem is at the forefront of the weather and climate
predictability continuum, where S2S variability can be represented by a finite number of rel-
atively large-scale discretelike modes. These discretelike modes evolve in a complex manner
through nonlinear interactions with themselves and transient eddies and weak dissipative
processes. The sources of predictability are a mixture of fast adiabatic and slow diabatic pro-
cesses that can be differentiated and diagnosed properly with a phase space approach based
on ENM and MLM theories. Although the approach described here is not unique, the key to
better prediction of S2S variability and weather regimes in a changing climate lies in im-
proved understanding of the fundamental nature of S2S phase space structure and associated
predictability arising from dynamical processes.
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