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[1] Daisyworld is a simple planetary model designed to
show the long-term effects of coupling between life and its
environment. Its original form was introduced by James
Lovelock as a defense against criticism that his Gaia theory
of the Earth as a self-regulating homeostatic system requires
teleological control rather than being an emergent property.
The central premise, that living organisms can have major
effects on the climate system, is no longer controversial.
The Daisyworld model has attracted considerable interest
from the scientific community and has now established
itself as a model independent of, but still related to, the Gaia
theory. Used widely as both a teaching tool and as a basis

for more complex studies of feedback systems, it has also
become an important paradigm for the understanding of the
role of biotic components when modeling the Earth system.
This paper collects the accumulated knowledge from the
study of Daisyworld and provides the reader with a concise
account of its important properties. We emphasize the
increasing amount of exact analytic work on Daisyworld
and are able to bring together and summarize these results
from different systems for the first time. We conclude by
suggesting what a more general model of life-environment
interaction should be based on.
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1. INTRODUCTION

[2] The Daisyworld model [Lovelock, 1983a, 1983b] was

invented to demonstrate that planetary self-regulation can

emerge automatically from physically realistic feedback

between life and its environment, without any need for

foresight or planning on the part of the organisms, an early

criticism [Doolittle, 1981; Dawkins, 1983] of Lovelock’s

Gaia hypothesis [Lovelock, 1972; Lovelock and Margulis,

1974]. As it was impossible to fully represent how the biota

and its environment are coupled on Earth, Lovelock [1983a,

1983b] offered a simple parable: Daisyworld is an imagi-

nary grey world orbiting, at a similar distance to the Earth, a

star like our Sun that gets brighter with time. The environ-

ment of Daisyworld is reduced to one variable, temperature,

and the biota consist of two types of life, black and white

daisies, which share the same optimum temperature for

growth and limits to growth. The soil of Daisyworld is

sufficiently well watered and laden with nutrients for

temperature alone to determine the growth rate of the

daisies. The planet has a negligible atmospheric greenhouse,

so its surface temperature is simply determined by solar

luminosity and its overall albedo, which is, in turn, influ-

enced by the coverage of the two daisy types. This produces

a nonlinear system with interesting self-regulating proper-

ties. The governing equations were first given and analyzed

by Watson and Lovelock [1983].

[3] Despite its abstract nature, in the nearly 25 years since

its invention, Daisyworld has become an iconic model,

which has inspired many variants and extensions and some

unexpected applications. Much of the literature centers on

the use of variants of the model to make points for or

against the Gaia theory that the Earth system self-regulates

in a habitable state, in which life, on average, contributes to

planetary self-regulation [Lovelock, 1988; Lenton, 1998]. A

key point about Daisyworld is that the daisies alter the same

environmental variable (temperature) in the same direction

at the local level and the global level. Hence what is

selected for at the individual level is directly linked to its

global effects. This makes the original model a special case

(and it is one that is not particularly prevalent in the real

world). Evolutionary biologists often criticize the original

model for this reason. Consequently, some of the variants of

Daisyworld have considered other special cases and shown

that it is possible to engineer Daisyworlds in which life

disrupts or destroys regulation, although their reasonable-

ness can also be questioned. Conversely, a number of other

special cases have been created in which robust planetary

self-regulation occurs; much of the theoretical interest in the
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model centers on establishing the conditions in which

regulation does, and does not, emerge.

[4] The field has now matured to the extent that the

viability of the Gaia theory is no longer directly tied to the

validity of the Daisyworld model, as was sometimes the

case in the early years after its inception. Hence we treat

Daisyworld as an interesting mathematical model in its own

right. It may inform the debate on Gaia, but they are not

inextricably tied. There have been many offshoots to other

areas of science, including nonlinear dynamics, ecosystem

and food web theory, evolutionary theory, physiology,

maximum entropy production, and artificial life. Thanks

to its relatively simple mathematical formulation, Daisy-

world is also widely used in the teaching of Earth system

science [e.g., Kump et al., 1999; McGuffie and Henderson-

Sellers, 1997; Ford, 1999].

[5] It is timely to review the body of work on Daisy-

worlds for the following reasons: (1) While recent years

have seen a burgeoning of papers, the main results that can

be obtained from variants of the model are now out there in

the literature, and in some cases they are being repeated by

authors unaware of previous work. (2) An elegant analytical

treatment of the original model is now available as is a more

complete understanding of the control theory behind Daisy-

world. (3) Many of those who have been inspired by

Daisyworld agree that it is now time to move on to develop

new conceptual models to address questions regarding

planetary self-regulation and the coupling of life and the

environment. Hence we aim in this paper to provide a

comprehensive, critical review and clarification of existing

work on Daisyworlds and to point the way forward. Further

interesting results are sure to emerge from Daisyworlds in

the future, but we expect these to be mostly in new

applications of the model and its spatially and/or ecologi-

cally extended variants.

[6] The paper is organized as follows. Section 2 intro-

duces the equations and formalism of Daisyworld and

provides a review of previous analytical solutions alongside

a new simplified solution that aids understanding. We also

discuss the basis of the control system through a further

simplified model and the appearance or otherwise of chaos

in the model. Section 3 examines the effects of extending

the original zero-dimensional model to higher dimensions

from one-dimensional (1-D) strips to three-dimensional

curved surfaces. Section 4 considers Daisyworld in an

evolutionary context and reviews studies that examine the

effects of evolution on Daisyworld. Section 5 considers

ecological extensions of Daisyworld. Section 6 discusses

applications of Daisyworld, including its use as a test arena

for the maximum entropy production hypothesis and alter-

native models that it has inspired.

2. ORIGINAL MODEL

[7] Mathematically, Daisyworld is simply a coupled set

of nonlinear differential equations that may be analyzed

using standard techniques from applied mathematics. The

original model is termed zero-dimensional because it

excludes spatial structure (although the heat transfer law

may be considered an approximation to it). Here we present

the original equations, review analytic progress, and then

include a simplified analytic solution. We then detail aspects

of control theory, especially the concept of rein control,

before reviewing the claimed appearance of chaos in the

Daisyworld model.

2.1. Original Equations

[8] Daisyworld [Watson and Lovelock, 1983] (hereinafter

referred to as WL) consists of two different types of

‘‘daisy,’’ which may be considered distinct species (because

there is no possibility of mixed replication of the types) or,

alternatively, as distinct phenotypes of the same species.

The two types are identified as either black or white

according to their reflectivity or albedo.

[9] The model starts with the equations of population

growth that are used to describe the daisy fields. These

equations are standard replicator equations from population

genetics, with the particular form inspired by the work of

Carter and Prince [1981]

@a
@t

¼ a p� að Þb xð Þ � ag xð Þ; ð1Þ

which, in general, describe logistic growth and constant

death within a limited resource system over time t. Here a is

a fractional coverage of the ground by a species, p is the

proportion of habitable bare ground in the system, and b
and g are the birth and death rates, respectively, having

some dependence on an unspecified environmental para-

meter x.

[10] For Daisyworld a coupled set of equations describe

the growth of each of the daisy types:

@aw

@t
¼ aw agb Twð Þ � g

� �
@ab

@t
¼ ab agb Tbð Þ � g

� �
;

ð2Þ

where the notation parallels that defined above. Here ag � p

� ab � aw describes the amount of available bare ground.

Note that p, the proportion of fertile ground in the system, is

a scaling parameter that is set to unity for the remainder of

this review. The environmental parameter above is identi-

fied as the local temperature felt by each daisy type, Tw and

Tb, respectively. The death rate g is now kept fixed, and the

functional form for b is chosen conventionally as

b Tð Þ ¼
1� k T � Topt

� �2
T � Topt
�� �� < k�

1
2

0 otherwise;

8<
: ð3Þ

representing a symmetric single-peaked function. Other

choices are possible, a Gaussian, for example, but this is the

accepted choice in the literature and in the original work

with the optimal temperature Topt = 295.5 K (22.5�C). The
parabolic width k is chosen so that the growth is bracketed

between 5�C and 40�C, i.e., k = 17.5�2.
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[11] As noted above, the daisies have a single defining

characteristic: their color or albedo. Albedo, or reflective-

ness, defines the proportion of incident light, or energy,

reflected back. Therefore, in this simplified case a pure

white daisy would have albedo 1 and reflect all incident

light back. A totally black daisy would have albedo 0 and

perfectly absorb all incident light. Fixed albedos are pre-

scribed for the white daisies aw, for the black daisies ab, and

for the bare ground ag. Therefore the mean planetary albedo

A is given by

A ¼ awaw þ abab þ agag; ð4Þ

ag = 1
2
by convention, and ab < ag < aw to keep the

definitions of colors sensible.

[12] The local temperatures Tw and Tb and the bare

ground temperature Tg are defined by making a simplifying

assumption about the heat transfer: a linearization of a

diffusion term [Budyko, 1969; North et al., 1981]. This

gives a degree of connectedness to the daisy patches or

stands without introducing space explicitly. A parameter q is

defined as the heat transfer coefficient, thereby defining the

local temperatures as

T4
w ¼ q A� awð Þ þ T4; ð5Þ

T4
b ¼ q A� abð Þ þ T4; ð6Þ

T4
g ¼ q A� ag

� �
þ T4; ð7Þ

where T is the planetary temperature related to the

constituent temperature by the total reradiation. This

process is modeled by the quartic Stefan-Boltzmann law

for black body radiation, well known to be accurate for

planets because of their thermal isolation. The final equation

is that the planet as a whole stays in thermal balance at all

times; therefore the absorbed incident energy is equal to the

energy reradiated given by the Stefan-Boltzmann law

SL 1� Að Þ ¼ sT4; ð8Þ

where SL is the average solar energy incident on the planet’s

surface and L is an adjustable (normalized) parameter

representing the luminosity of the star. S = 917 W m�2 is

used, which is much higher than the average solar flux

incident on the Earth today, because the Earth has a

relatively low planetary albedo and a significant greenhouse

effect ((4�)S = 1368 W m�2 is the true value, which would

give a much lower figure (around 234 K) for the average

planetary temperature). The parameter s is the Stefan-

Boltzmann constant, which has a numerical value of 5.67 �
10�8 W m�2 K�4 (in SI units). For the model to have

physical behavior, q < SL/s (1.62 � 1010 K4 when L = 1).

WL took the value q = 2.06 � 109 K4, which is comfortably

below this.

2.2. Analytical Solutions

[13] WL demonstrated some features relating to the

steady state behavior of these equations and then proceeded

to provide simulated solutions of the full model. This

method of simulated solution for the zero-dimensional

model has now been largely superseded by the development

of exact solutions. Here we concentrate on the available

analytic solutions. Two (to all essential purposes indepen-

dent) primary sources are appropriate here: a detailed study

of the dynamical system by DeGregorio et al. [1992a] and

an exact solution by Saunders [1994].

[14] Both Saunders [1994] and DeGregorio et al. [1992a]

start by examining the fixed point solutions of the replicator

equations (2). The stability and full nonlinear analysis of

these fixed points is presented by DeGregorio et al.

[1992a]. There are four possible fixed point solutions for

the equations, which correspond to possible permutations of

the daisies existence, black and white daisies being either

alive or dead. The stability of these points is determined by

the planetary temperature and therefore the luminosity L.

The most interesting of these points is, unsurprisingly, the

‘‘both alive’’ fixed point, which is stable for a wide range of

values. DeGregorio et al. [1992a] prove, in some consider-

able detail, that this fixed point is unique and that the two

associated stability eigenvalues are both negative. Later

analysis [Weber, 2001] looks at the response of this fixed

point to perturbations in population, and again it is stable,

with negative eigenvalues.

[15] The key observation, made by Saunders [1994], that

yields the exact mathematical solution is that at this fixed

point, providing the death rate is a constant, we can equate

the two growth rates and thereby find a symmetry between

the two temperatures. That is

agb Twð Þ ¼ g

¼ agb Tbð Þ

) Topt � Tw
� �

¼ 	 Topt � Tb
� �

:

ð9Þ

[16] The positive solution leads to a solution of the model

that cannot sustain a heat transfer; therefore the interesting

behavior of the model is governed by the solution for which

the local temperatures of the two daisy stands symmetrically

straddle the optimal temperature (note that the equation

governing the temperature of the bare ground is ancillary to

the model behavior). This simple observation may then be

exploited by using it to replace one of the temperatures in

the heat transfer equations and eliminating the planetary

temperature to find

T4
b � 2Topt � Tb

� �4¼ q aw � abð Þ; ð10Þ

a cubic equation for one of the daisy stand temperatures

(black in this case). This then determines all other variables

in the model.

[17] Using the parameter values from WL, Saunders

[1994] shows that in the coexistence region (0.75 < L <
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1.38) the planetary temperature varies weakly with insola-

tion as

TT ¼ 299
12:2

14:7L� 1:9
þ 0:005

	 
1
4

L
1
4; ð11Þ

furthermore, the regulation leads to constant growth rates

b(Tw) = b(Tb) = 0.918 and total daisy coverage ab + aw = 1�
g/b = 0.673, which we shall elucidate more fully in section

2.3. The behavior of this model is shown in Figures 1 and 2 in

two plots obtained through computer simulation.

2.3. Simplification

[18] It has long been noted [Watson and Lovelock, 1983;

Saunders, 1994; DeGregorio et al., 1992a; Weber, 2001;

Wood et al., 2006] that linearizing the Stefan-Boltzmann

law makes little difference to the results, because the chosen

optimal temperature (295.5 K) is sufficiently far away from

the repeated root of the quartic, sT4, i.e., zero, that a linear
approximation is accurate. It is also possible to introduce

different energy budgets at this stage [Weber, 2001], which

are more familiar in climate modeling.

SL 1� Að Þ ¼ s ‘½ �T ; ð12Þ

Tw ¼ q ‘½ � A� awð Þ þ T ; ð13Þ

Tb ¼ q ‘½ � A� abð Þ þ T : ð14Þ

[19] We make a further simplification and assume that the

albedos of the black and white daisies are symmetrically

arranged by a value B around that of the bare ground and

therefore can be written as ab = 0.5 � B and aw = 0.5 + B.

This, and more importantly the linearization, permits con-

siderable simplification of the results above, as now the

equation determining the daisy stand temperatures (10) is

linear rather than cubic, and so an explicit solution may be

found for the temperatures:

Tb ¼ aw � abð Þ q ‘½ � � 2TI

h i
Bþ q ‘½ �Bþ TI ð15Þ

Tw ¼ aw � abð Þ q ‘½ � � 2TI

h i
B� q ‘½ �Bþ TI : ð16Þ

We have introduced an additional variable TI, an imposed

temperature, which is the temperature the planet would be if

there were no daisies (using (12)). Here q ‘½ � is now a

rescaled version of the WL parameter q chosen so that

Topt
3 q ‘½ � = q and has a numerical value of �80. This

parameter is equivalent to (4�) q0 as given by WL. The

relation between the daisy populations can now be written

down explicitly giving

aw ¼ 1

2
þ Topt � TI

2B q ‘½ � � 2TIð Þ
� g

2 1� k q ‘½ �ð Þ2B2

h i ð17Þ

ab ¼
1

2
� Topt � TI

2B q ‘½ � � 2TIð Þ
� g

2 1� k q ‘½ �ð Þ2B2

h i ; ð18Þ

Figure 1. Plot showing the occupancy of the two different
daisies types against increasing luminosity, simulated using
the methodology and parameters used by Watson and
Lovelock [1983]. The single-daisy occupancies are shown
by the dashed red lines, and the solid black line shows the
sum of the two-daisy types. The total amount of life is
conserved in the coexistence regime in this system with a
quadratic growth law.

Figure 2. Plot showing the average planetary temperature
as a function of the luminosity using the techniques of
Watson and Lovelock [1983]. Note the negative gradient of
the temperature in the two-daisy regime. This effect is
because the temperatures of the different daisy stands are
fixed, but the relative proportion varies as the luminosity
increases: The average planetary temperature is not held
constant. The loops at the end of the regulating regions
indicate the hysteresis effect in the model, the solid lines
indicating the system path when the luminosity is steadily
increased or decreased from unity and the dashed lines
indicating when the system is started from infinitesimal
daisy populations at each luminosity.
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which implies

aw þ ab ¼ 1� ag ¼ 1� g

1� k q ‘½ �ð Þ2B2
; ð19Þ

and furthermore, an exact relation for planetary temperature

may then be found,

T ¼ TI
Topt � q ‘½ �=2

TI � q ‘½ �=2

 �
; ð20Þ

which (curiously) has not been previously presented in the

literature. A binomial expansion, noting the approximate

order of magnitude difference between the temperatures and
q ‘½ �/2, gives T � Topt: homeostasis. The manner in which the

temperature decreases at this fixed point steady state in

response to rising luminosity can then be shown exactly by

differentiation,

@T

@TI
< 0; ð21Þ

confirming the early observation of WL. This form of the

solution is similar to that of Weber [2001], and the results

are very similar to those obtained by Saunders [1994],

indicating the accuracy of the linearization. DeGregorio et

al. [1992a] also present the linearization, and our results

agree with the forms presented by them. The solutions for

the single-species stability at either end of the range may

also be computed exactly up to a cubic with or without the

linearization. These solutions and their stability range are

responsible for hysteresis in the model. Figures 3 and 4

show the occupational plots and stabilities of these

solutions.

[20] The existence of a full analytic solution has provided

a solid foundation for Daisyworld; the model attracted much

criticism in its early life for issues that turned out to be

implementation details rather than substantive critiques.

However, like all analytic approaches, there are limitations,

and therefore the solution should be seen as illustrative.

2.4. Nature of the Control System

[21] Building on previous work, Saunders [1994], Saun-

ders et al. [1998], and Harvey [2004] argue that Daisyworld

can be understood as an example of a rein control system.

Rein control was introduced in a physiological context by

Clynes [1969] where it is hypothesized that certain variables

(e.g., core body temperature in mammals) are maintained

within a range of values by separate control ‘‘reins’’ that

oppose forces that seek to perturb the variable. The rein

metaphor is apt in that reins can only pull not push. It is

possible for a single rein to regulate a variable against

perturbations that move the variable one way. For example,

a heater will be able to maintain a room temperature of

22.5� if it is always colder outside (assuming that the heater

is able to provide sufficient heat). If the variable is subject to

two opposing perturbations, two opposing control reins are

required.

[22] The rein control concept was further developed by

Saunders et al. [1998] as integral rein control within an

analysis of the regulation of blood glucose in humans (see

section 6.3). This type of control system differs, as the

opposing reins not only control a central variable but also

interfere with the action of the opposing rein. We prefer the

term ‘‘antagonistic rein control’’ for this reason. This control

mechanism can lead to a situation with zero steady state error,

an effect also realized by some other control systems such as

a proportional integral controller. We can now identify WL

Daisyworld as a system of this type where the interference is

due to the growth rate of each daisy being a function of

shared bare ground and, consequently, a competition for bare

Figure 3. Plot showing daisy occupations within the linear
approximation. The plot is qualitatively the same as Figure 1,
but the single-daisy regions are considerably suppressed
under this approximation.

Figure 4. Plot showing the temperature response of
Daisyworld within the linear approximation (12). The plot
is qualitatively the same as Figure 2, with the single-daisy
regions once more suppressed (Figure 3). The visual
difference is because the linear approximation becomes
increasing less valid away from the optimal temperature.
This, in effect, creates a rescaling of L and greatly increases
the temperature range at which the daisies can survive. This
rescaling is also responsible for the enhanced hysteresis
regions.

RG1001 Wood et al.: DAISYWORLD—A REVIEW

5 of 23

RG1001



space to grow into. Consequently, during daisy coexistence,

ab + aw = const. In equations (11) and (20) we see that the

planetary temperature depends on the imposed insolation L,

while ab + aa does not. Antagonistic rein control in WL

Daisyworld will cease when there are only black or only

white daisies at the limits of regulation or in models such as

those of Staley [2002] and Harvey [2004] where a rein

control rather than antagonistic rein control paradigm is more

appropriate.

[23] To illustrate the rein control concept, Harvey [2004]

created a ‘‘cut-down’’ Daisyworld in which he simplified

the physics of the original model and assumed that each

daisy type will inhabit a separate grey daisy bed. The two

beds are coupled via the transference of heat, which can be

considered analogous to heat diffusion modeled in climate

energy balance models [North et al., 1981] (see section 6.1).

The amount of diffusion D between the two beds determines

how closely the two daisy bed temperatures are to each

other.

Tb ¼ SL 1� Abð Þ � D Tb � Twð Þ

Tw ¼ SL 1� Awð Þ þ D Tb � Twð Þ:
ð22Þ

[24] Additionally, the parabolic birth rate function of (3)

is replaced with a peaked piecewise linear function (see

Figure 5), or ‘‘hat function (H(T)),’’ that specifies the steady

state population size for a daisy bed as a function of its

temperature:

@ai

@t
¼ H Tið Þ � ai; ð23Þ

where

H Tð Þ ¼
1� 2 T�Toptj jð Þ

k
T � Topt
�� �� k

2

0 otherwise:

8><
>: ð24Þ

[25] The function defined by (24) determines the steady

state coverage of the daisies rather than the rate at which the

daisies grow and replaces the replicator equations (2).

Steady states of the system as a whole were found for each

incremental level of luminosity by numerical integration

using the Euler method.

[26] The model has three key differences from the orig-

inal Daisyworld. First, the population is assigned in separate

beds according to the growth function rather than allowed to

replicate. This removes the abilities of daisy populations to

overshoot or compete: It is a rein system rather than an

antagonistic rein system. Second, the use of the simplified

heat transport has the effect of making the q parameter used

by WL a linear function of the applied temperature. Finally,

the witches hat function, though creating some mathemat-

ical inconveniences, linearizes the response of the system to

changes in insolation. The proportion of respective daisy

beds may be found analytically as

ab ¼
k

k þ 4TIB
1þ2Dð Þ

�
2 TI � Topt
� �
k þ 4TIB

ð25Þ

aw ¼ k

k þ 4TIB
1þ2Dð Þ

þ
2 TI � Topt
� �
k þ 4TIB

; ð26Þ

where B and TI are identical to those defined in section 2.3. A

similar principle of the total occupation is observed, as the only

dependence on the applied temperature is through the explicit

dependence of the heat transfer parameter (effectively q).

Regulation in the coexistence region is once more observed

T ¼ TI
Topt þ k=4B

TI þ k=4B

 �
; ð27Þ

a similar form to that in section 2.3 but which now yields a

positive gradient in the coexistence regime as opposed to (21).

Figure 5. Two growth rate functions plotted: original WL
in thick solid line and linear ‘‘witches hat’’ from Harvey
[2004] in dashed line. Temperature increases from left to
right on the horizontal axis. Growth rates increase from zero
on the horizontal axis. The thin sloping lines represent the
negative feedback that white daisies exert on temperature.
Steady state growth rates are found where the thin lines
bisect the growth functions. Points C and D are steady state
growth rates to the right of the optimal growth temperature
of 22.5�C that prove to be unstable. Any decrease in daisy
coverage would result in the population decreasing to zero
at point Z. Any increase in daisy coverage would result in
the growth increasing and the daisy temperatures passing
the optimum and coming to rest at point A or B depending
on which growth function is used. As luminosity varies, the
sloping line slides along the horizontal axis. Point E shows
the greatest luminosity that can still support a white daisy
population with an original WL growth function. The slope
of the thin line is determined by the albedo of the white
daisies. The higher the albedo, the more obtuse the angle it
makes with the horizontal axis. The line of feedback
representing black daisies would be less than 90�C, with
darker daisies making a more acute angle with the
horizontal axis.
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[27] Hysteresis is observed in both the original and the

cut-down models, but this latter model is more convenient

to study the details. Dyke and Harvey [2005] show in the

cut-down system that this hysteresis is largely dependent on

the value for the viability range k�1 that is used in the

growth function (24); this parameter does not effect the

limits of regulation; the system still regulates even in the

extreme case of k ! 1. Dyke and Harvey [2006] show

further that extending the viability range of the daisies can

counterintuitively decrease the range of luminosity over

which global temperature is regulated. At the limits of daisy

coverage, allowing the daisies to grow over a wider range of

temperatures can result in a higher proportion of daisies that

interfere with the regulating daisy type.

2.5. Chaos in Daisyworld?

[28] The emergence of chaotic and oscillatory solutions

from the basic equations proposed by WL has greater

significance in the development and critique of the Daisy-

world system than might be expected because one of the

earliest mathematical developments of the model empha-

sized the creation of chaotic solutions [Zeng et al., 1990

(hereinafter referred to as ZPE), Zeng et al., 1992]. ZPE

argue that Daisyworld was more likely to display chaotic

rather than regulatory behavior. Many of their conclusions

were robustly dismissed by Jascourt and Raymond [1992]

in a succinct response. This helped to clarify details about

implementation of the model, in particular the use of

continuous or discrete models, and the manner in which

the environment is coupled to the growth equations. A more

careful analysis of the problem was presented independently

by Maddock [1991] addressing all of the issues raised,

which regrettably received far less attention in the literature.

The debate has now become a tutorial analysis of potential

modeling pitfalls [Ford, 1999].

[29] ZPE used a version of equation (2) implemented as a

difference equation

aw t þ 1ð Þ ¼ aw tð Þ þ aw tð Þ 1� aw tð Þ � ab tð Þ½ �cb � gaw tð Þ ð28Þ

and used a similar equation for the black daisies.

[30] ZPE introduce a new parameter c, so that the

equations more closely resemble the logistic map intro-

duced by May [1974] in his classic analysis of chaos in

population dynamics

a t þ 1ð Þ ¼ ra tð Þ 1� a tð Þ½ �; ð29Þ

where the similarity arises from the linear increase and

quadratic reduction in population. In the logistic map, chaos

appears for r > 2.5, the origin of which is the discrete

generation time (the time evolution of the population is a

series governed by a difference equation rather than

function governed by a differential equation). In the logistic

map the series represents discrete, nonoverlapping genera-

tions, and the time step is a generation time: This makes

sense when applied to the daisies, but ZPE (implicitly) use

the same time step in the equilibration of the temperature.

The notion of discrete generations of temperature is peculiar

since heat flow is a continuous process; it can be

rationalized by assuming the temperature equilibrates with

each generation before reproduction can occur and the large

intergenerational swings of temperature have no effect on

the biota. The chaotic instability explicitly requires both

discretization and the fourfold increase in birth rate from the

WL equations and implicitly requires the entire planet to

oscillate in phase, i.e., seeds to be dispersed equally across

the planet.

[31] ZPE’s flawed analysis could be read as an attempt to

discredit the basic premise of the original Daisyworld and

by extension the Gaia hypothesis. However, as Jascourt and

Raymond [1992] observe, the altered Daisyworld continues

to regulate in the neighborhood of any reasonable parameter

space. Even in this potentially difficult case the system still

achieves a homeostatic state on average.

[32] A more complete analysis of the effect of explicit

time lags was presented by DeGregorio et al. [1992b], who

introduce three different forms of explicit time lag into the

system. The first is simply a standard two-species Daisy-

world model as described in section 2 but with the growth

rate b [T(t)] replaced by b [T(t � t)], where t is the fixed

delay time that makes the growth in the present dependent

on the temperatures in the past. This simple substitution

leads to a complicated set of coupled equations, but a fixed

point analysis can proceed as in the nondelayed case

[DeGregorio et al., 1992a] as the time stationary solution

is unaffected by the delay. The characteristic equation for

the linear perturbation analysis is found to be transcenden-

tal, but in the case of ideal solar driving the black/white

symmetry may be exploited to factorize the characteristic

equation.

[33] As DeGregorio et al. [1992b] note, this analysis is

equivalent to that of the linear approximation of a classical

logistic equation [Cushing, 1977]. Three scenarios may

occur; the system may be stable, oscillatory and stable, or

oscillatory and unstable according to the value of t. Here
the bounded nature of the system yields oscillatory solutions

even in the unstable case. The boundary between the former

two solutions is �[(1 � g)g]�1, the natural timescale in the

system: essentially, the death or turnover rate.

[34] For a continuous system, however, the integrated

history approach is more appropriate. The growth rate

b[T(t � t)] is replaced by

b T tð Þ½ � ¼
Z t

�1
k t; t0ð Þb T t0ð Þ½ �dt0; ð30Þ

where the kernel is chosen so that k(t, t0) = k(t � t0) and the

authors permit it to take one of two forms

k tð Þ ¼ 1

t
e
�t
t ; ð31Þ

corresponding to so-called Weak delay, and

k tð Þ ¼ 1

t2
te

�t
t ; ð32Þ
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corresponding to so-called Strong delay. A plot of these

curves is shown in Figure 6 to illustrate the implied history

dependence. The characteristic equation derived is poly-

nomial in each case, cubic for weak delay and quartic for

strong delay. Factorization is possible for the case of perfect

solar driving, i.e., Topt = TI. For the weak delay the system

remains asymptotically stable for even very large values of

the t parameter (long history dependence), but for the

strong case the system undergoes a Hopf bifurcation to a

purely periodic solution for a particular value of t that is

once more �[(1 � g)g]�1.

[35] Thus DeGregorio et al. [1992b] demonstrate how an

oscillation occurs in the time series response when some

form of delay is introduced into the model. For more

complicated implementations of the model that explicitly

take into account the thermal relaxation time, this is likely to

lead to pure oscillatory solutions. The history kernel method

is particularly effective because of its generality: Any spatial

models will lead implicitly to a kernel of this general type

because of their degree of spatial inhomogeneity.

[36] Nevison et al. [1999], who regrettably seem unaware

of the work of DeGregorio et al. [1992b], generate such

oscillations by introducing a heat capacity C (and hence

thermal relaxation) to the simple zero-dimensional model

with two distinct daisy species present:

C
@T tð Þ
@t

¼ SL 1� A tð Þ½ � � sT tð Þ4: ð33Þ

This is sufficient to trigger sustained oscillations. However,

the nonlinear evolution of the albedo field means it is not a

simple matter to extract the exact form of the integral kernel

for this system.

[37] It is interesting to note that oscillations were not seen

in the two-dimensional (2-D) model of von Bloh et al.

[1997] (discussed in section 3) that includes a heat capacity.

The presence of thermal capacity in the simplified model

with two distinct daisy types leads to a strong decay kernel,

yet in a fully spatial case the thermal capacity alone does not

create a sufficient lag to trigger the Hopf bifurcation. To

date, there has not been a more detailed simulation that has

produced a chaotic solution to the Daisyworld system.

3. SPATIAL EXTENSIONS

[38] WL’s q parameter governs the difference between the

temperatures experienced by the black and white daisies. It

represents a level of structure between the individual daisies

and the total planet. The limiting cases are q = 0 represent-

ing perfect heat conduction, with all regions of the planet at

the same temperature, and q = SL/s representing zero heat

flow. The existence of this intermediate level structure is

crucial to Daisyworld: With either limiting case choice for

q, coexistence regulation collapses. The formulation of

energy balance using q assumes that even a vanishingly

small population of daisies can create their own microcli-

mate and achieve perfect local homeostasis of temperature.

[39] One way to eliminate the arbitrary choice of q is to

use an explicit spatial model with a heat diffusion equation:

dT rð Þ
dt

¼ �Dr2T þ SL 1� a rð Þ½ � � sT rð Þ4; ð34Þ

where T and a vary with spatial location r. The simplest

heat flow equation with explicit spatial resolution would be

a 1-D Daisyworld with q removed. Surprisingly, this model

appears not to have been studied.

[40] The extension to spatial Daisyworlds also opens the

possibility of inhomogeneous forcing (e.g., a curved planet

with poles and equator) and the possibility of explicit

seeding, mutation, and daisy patch structure. These models

with explicit diffusion can exhibit rich behavior including

catastrophic desert formation or population explosions.

3.1. One-Dimensional Daisyworlds

[41] Adams [2003], Adams and Carr [2003], and Adams

et al. [2003] examine a 1-D Daisyworld with curvature

based on a spherical planet. Each location can support a

population of black and/or white daisies. An explicit diffu-

sion equation is implemented, but implicit diffusion via q is

retained, setting an effective minimum to the heat transfer.

Because of curvature this model exhibits desert formation

where, depending on insolation, the equatorial or polar

regions are denuded of biota.

[42] Less intuitively, the distribution of daisies forms

stripes of pure black and white daisies rather than a

coexisting population. For finite diffusion, stripe formation

increases the heat transfer between the two regions (equiv-

alent to lowering q in (7)). Additional heat transfer cools the

black and warms the white daisies, increasing the growth

rate of both: Hence this separation is favored. However, as,

for example, the black stripe widens, the temperature at the

center increases, until the limiting value for black daisy

growth occurs. A stripe of white daisy can now form in this

region. This process determines the maximum width of a

stripe, which is thus related to the diffusion length.

Figure 6. Systematic plot of the kernels for weak (solid
line) and strong (dashed line) delay plotted as a function of
relative weighting and time from the present.
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[43] The spatial Daisyworld is also analyzed with respect

to perturbations (removal of some daisies and watching for

regrowth). This changes the stripe pattern, without affecting

the ratio of black to white, suggesting that the observed

stripe patterns are metastable. Alternate perturbations in

which some areas are permanently unavailable for growth

reduces the range over which regulation is possible, an

effect similar to increasing g. The equations of the 1-D

Daisyworld are readily generalizable to two dimensions and

produce regular patterns that depend on the initial seeding

(B. J. Adams, unpublished results, 2003).

3.2. Two-Dimensional Daisyworlds

[44] Work on 2-D Daisyworlds has been based around

replacing q with explicit diffusion and representing the

surface by a cellular automaton grid. Each grid site is either

occupied or unoccupied at a particular time step. An

occupied cell will remain occupied at the next time step

with a probability of 1 � g, where g is the death rate of the

vegetation it contains. An unoccupied cell can regrow

according to the local temperature.

[45] The simplest regrowth rule in the spirit of equation (1)

is to have two daisy types regrow black or white according

to their relative proportions. This model has not been

published, primarily because it fails to show any regulation.

The minimal change needed in order to achieve regulation is

that seeding is local (i.e., the new daisy is a copy of one on

an adjacent site). A model of this type, with explicit closest

approach (CA) growth rules, was presented by Lenton and

van Oijen [2002]. This introduces the crucial intermediate

length scale and allows successful regions of space to

expand while maintaining their black/white ratio. These

local spatial interactions can lead to bifurcations and limit

cycles in the single-daisy regimes [Lenton and van Oijen,

2002]. The spatial scales associated with clustering can also

be studied in this model, but no particular length scale is

selected; see Figure 7.

[46] The most studied 2-D model, introduced by von Bloh

et al. [1997], includes multiple daisy types with a regrowth

rule as follows: At a given time step, one cell is chosen at

random. If the neighboring cell is empty, there is no coloni-

zation. If the neighboring cell is vegetated, then it has a

chance, determined by its growth rate b(T), of colonizing the
empty cell. During successful colonization the albedo of the

colonizing vegetation is allowed to mutate in a random

fashion by a small amount. After many such mutations a

continuous spectrum of possible albedos (0 < a < 1) can be

realized. This is the basic model henceforth referred to as 2-D

Daisyworld; see Figure 8.

[47] This Daisyworld is an almost perfect temperature

regulator [von Bloh et al., 1997; Ackland et al., 2003]; there

is no luminosity dependence in the variation from the

optimal value; the only deviations are stochastic in origin.

The planetary temperature is maintained very close to the

optimum for daisy growth over a wide range of solar

luminosity. A rapid switch occurs at the termination of

temperature regulation, and solar luminosity (S 0) must be

decreased to 1.25 before the biosphere recovers; that is,

there is a large hysteresis loop. The perfect regulation is not

a result of the spatial nature of the model, rather it arises

from the ability of the model to have near-optimal growth

temperature everywhere and simultaneously regulate tem-

perature and maximize life [Ackland et al., 2003].

[48] Despite the existence of a particular daisy albedo that

optimizes temperature at any given insolation, the model

actually shows a distribution of daisy types. This distribu-

tion of albedo is affected by diffusion and by mutation. In

the limit of low diffusion, mutation produces a Gaussian

peak around the optimum value. By contrast, for high

diffusion the distribution is a bounded exponential in albedo

that maximizes entropy (subject to optimizing temperature)

(see section 6.1). The general case is a distribution that

interpolates between these extremes.

[49] Different growth rules make a significant difference

to the range of planetary temperature regulation. Using

parameters from von Bloh et al. [1997] when colonization

is determined by the temperature of the cell to be invaded

(rule A), regulation breaks down at S 0 � 1.8. When

colonization is determined by the temperature of invading

vegetation, regulation persists to S 0 � 2.3 (rule B). There are

two explanations: First, under rule B, at high solar lumi-

nosity, pale invading vegetation is significantly cooler than

the ground to be invaded and is thus able to colonize it. In

addition, under rule A it is no more likely for one albedo

type to colonize than another. However, under rule B the

daisies with an albedo better suited to the prevailing solar

Figure 7. Snapshot showing a 2-D, two-species model
consisting of only black and white daisies. Red patches are
bare ground. This system has been little studied, but it does
regulate the planetary temperature well, although it is more
susceptible to collapse under perturbation. Interestingly,
there is no characteristic size expressed by the daisy
patches (A. J. Wood and G. J. Ackland, unpublished
results, 2005).
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luminosity are more likely to colonize empty areas, thus

improving the regulation of the whole system.

[50] Fully spatial models allow us to explicitly consider

more realistic geometries for the planet. Curvature introdu-

ces inhomogeneous insolation that leads to desert formation.

In two dimensions it was found that desert formation is a

nucleation and growth process: As insolation increases, the

system becomes unstable to persistent desert formation. The

desert is formed at the equator once regulation from daisies

on all sides is insufficient and immediately spreads to a

latitude where cooling by daisies on one side only can cool

the area sufficiently. However, before the desert forms in a

band around the equator, transient desert regions of roughly

circular shape grow and shrink, until eventually one of these

fluctuations reaches a critical size and engulfs the planet. A

relatively small amount of planetary cooling can prevent

desert formation if applied during this transient period;

however, once the desert engulfs the entire planet, much

greater cooling is required to eliminate it [Ackland et al.,

2003].

[51] Another effect is spatial segregation: Habitat frag-

mentation affects the biodiversity and the functioning of

climate regulation [von Bloh et al., 1997]. Human interven-

tion was modeled by making randomly chosen sites un-

available for growth. When these infertile areas generate a

spanning cluster that disconnects areas of vegetation, self-

regulation begins to progressively break down (the ‘‘perco-

lation threshold,’’ where 0.408 of the cells are infertile

[Essam, 1980]). Up to this point, temperature regulation is

hardly affected because the transport of heat between the

infertile areas and adjacent vegetation prevents them from

becoming hot spots. As the vegetation fragments, competi-

tion between different albedo types is restricted to within the

fragments (but not between them). Founder effects in the

islands created and genetic drift due to weakened selection

may then lead to suboptimal regions that destroy the

regulation of Daisyworld. The geometry of habitat destruc-

tion is also critical. When habitat is destroyed by progres-

sively reducing the size of disconnected square regions

available for daisy growth, temperature regulation is imme-

diately impaired. Thus regulation appears to depend on the

size of the fully connected region of vegetation rather than

the total amount.

4. EVOLUTION

[52] The original Daisyworld model considers two fixed

species that have no capacity for genetic or phenotypic

change, thus effectively prescribing the system solutions.

Evolutionary biologists have criticized the model for this

and a host of related reasons, suggesting that the preor-

dained species were chosen so as to have the correct

properties to regulate temperature and asking: How could

such a system evolve by natural selection?

[53] Dawkins [1983] first argued that in a real world there

would be daisy species that ‘‘cheated’’ by saving the energy

of producing pigment, while enjoying the climate regulation

offered by the other daisies. Daisyworld is often perceived

as an example of altruism: where an organism, to the

detriment of its own fitness, performs some function that

benefits others, raising the well-known theoretical ‘‘prob-

lem’’ of how such altruism could evolve [Hamilton, 1964].

However, it is arguably inappropriate to view Daisyworld in

Figure 8. Plot showing a 2-D, single-species model, originally introduced by von Bloh et al. [1997]. (left) A large number
of different albedos are present at any different time in the model, including large numbers of grey pigmented daisies. Bare
ground is represented by red. (right) There are also considerable temporal as well as spatial fluctuations in the temperature
field. In the false color image, white is the coldest color, then blue, then green (which is optimal). The hotter than optimal
colors are red and then black.
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altruistic terms, because the successful daisy traits benefit

their carriers whether or not they benefit others.

[54] Evolutionary biologists have also argued that there is

an inherent conflict between the more immediate, local

optimization of evolution by natural selection and the

longer-term, larger-scale process of environmental regula-

tion [Hamilton, 1995, 1996; Lenton, 1998]. To address this

demands a move from ‘‘static’’ evolutionary models toward

those mimicking the generation of new traits [Hamilton,

1996]. Sections 4.1–4.5 categorize variants of Daisyworld

according to which of the traits are allowed to evolve and in

which manner before considering variants that have attemp-

ted to alter the underlying nature of the feedback loops.

4.1. Discrete Changes in Albedo

[55] A series of studies have examined the effect of

introducing daisies of differing albedo. This began with

Lovelock [1992], who in answer to the criticism of Dawkins

[1983] began by introducing a ‘‘cheat’’ in the form of a

third, grey daisy type with an improved growth rate (for not

producing pigment of one type or the other). This makes

little difference to the temperature regulation. The grey

daisies clearly flourish when temperatures are ideal, but

they do not destabilize the regulation as they recede when

temperatures are far from optimal. They noticeably level off

the regulation (i.e., distort the result (21)) of temperature in

the occupancy regime. Subsequently, Lansing et al. [1998]

showed that the growth benefit given to the grey daisies is

incidental; the same qualitative behavior arises with no

benefit.

[56] Introducing one additional daisy type inspired

Lovelock [1992] to introduce many types. When there are

multiple daisy types available, no more than two survive for

any given applied temperature; see Figure 9. This signifi-

cantly levels off the temperature curve in the regulating

regime. This effect has been expanded upon in subsequent

work [Lenton, 1998; Lenton and Lovelock, 2001; Ackland,

2004]. What consistently emerges is that where there are

discrete species of daisy with distinct albedos, then the

solution at a given imposed temperature will usually be

one with two daisy types only. They will have albedos that

correspond to the planetary temperatures that most closely

bracket the ideal temperature. There also exists a narrow

range of luminosities where only one daisy type exists. This

effect occurs because the single-daisy solution can populate

a larger area of planet than a two-species solution, i.e., ag =

1 � g as opposed to (19).

4.2. Adaptation to Prevailing Conditions

[57] There is a further way daisies could evolve in the

model, namely, that a given daisy type could change its

preferred growth temperature over generations. This seems

eminently reasonable; for example, if the surroundings of a

black daisy are slightly too hot, then any offspring that

grows better in warmer conditions should be preferentially

selected. In the model this should result in the black daisy

population evolving its optimal temperature upward toward

its local temperature. From the point of view of the white

daisies this may be described as a ‘‘selfish’’ evolutionary

step. This type of adaptation has been considered repeatedly

in the Daisyworld literature and has somewhat unfortunate-

ly been termed ‘‘Darwinian’’ by Robertson and Robinson

[1998]. We avoid this convention here because it could be

taken to imply that altering the environment is not ‘‘Dar-

winian,’’ which clearly it can be.

[58] Keeling [1991] first considered alternative optimum

growth temperatures by introducing a species, kudzu, with

the same albedo as the black daisies and a growth curve that

peaks at 33�C (rather than the 22.5�C peak of the daisies)

but otherwise has the same mathematical properties. The

presence of the kudzu caused an environmental catastrophe

at imposed temperatures where in the normal daisy solution,

black daisies would be expected to dominate. The black

daisies are outcompeted and wiped out by the kudzu, which

does differentially better on the warmer patches. With the

regulating effect of the black daisies removed, the kudzu

drags the temperatures higher causing the white daisies to

die out at lower than the expected values of the luminosity.

With the white daisies gone, the kudzu has only limited

regulatory properties, as with any single species solution,

and the loss of all life results.

[59] Similar results were reported by Saunders [1994],

who noted the decrease in the range of regulatory range for

small deviations from the optimal, but it was an article by

Robertson and Robinson [1998] (hereinafter referred to as

RR) (recently elaborated by Weber and Robinson [2004])

that first tried to incorporate this effect into an evolving

model. They allow the optimal temperature for daisy growth

to shift slowly toward the current prevailing temperatures.

The model shows that even small rates of adaptation tend to

Figure 9. Plot showing the area fractions when five
daisies are present on a Daisyworld. The data presented here
are obtained numerically by integrating the original model
of Watson and Lovelock [1983]. The parameters are varied
slightly in order to emphasize the regions where only one
daisy species is present, and so k = 7.5�, g = 0.1, and q is 1.5
times the WL value. The single-daisy region is identifiable
by the gap that appears on the x axis and the slightly raised
area on the total occupation where the single-daisy region
may raise the total population to almost 1 � g.
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destabilize the regulatory effect of Daisyworld. Considering

only the case of increasing luminosity, the black daisies,

once established, simply shift their optimal temperatures

rather than give up space to the white daisies.

[60] RR’s approach has been criticized in a number of

ways [Lenton and Lovelock, 2000; Sugimoto, 2002]. On a

purely practical level the authors provide limited implemen-

tation details of their model, which makes it difficult to

reproduce. Lenton and Lovelock [2000] point out that RR’s

approach leads to grossly unphysical situations (for in-

stance, life is able to flourish happily around absolute zero)

and that including a simple bounding function on the

growth rate (that takes into account, say, the efficiency of

chemical and photochemical processes at different temper-

atures) restores a form of homeostasis

b Tð Þ ¼ 1� k T � Topt
� �2h i

1� k 0 Topt � Tideal
� �2h i

; ð35Þ

where the ideal temperature Tideal is predetermined by these

physical processes. Lenton and Lovelock [2000] show that

regulation is still provided even when k0 is large compared

to k or when the bounding function deviates from parabolic.

[61] At a conceptual level, there is no reason to expect

organisms that are capable of perfect and infinite adaptation

to regulate their environment; they have no need to do so.

So we should not be surprised by RR’s result. A secondary

critique is that the treatment of the two traits in the model

(preferred temperature and color) is manifestly unequal.

There is no way to determine a priori which kinds of

adaptation are ‘‘Darwinian’’ (i.e., by RR’s terminology,

which traits are subject to mutation and selection), and

RR’s specification of growth temperature as the sole ‘‘Dar-

winian’’ adapting trait seems arbitrary. Moreover, this trait

is specifically directed toward a goal and neglects random

genetic drift.

[62] Sugimoto [2002] later claimed, with an analytic

proof, that the results of RR must be incorrect. However,

it is not clear this claim is valid as the nature of the fixed

point was not established, which may invalidate this exact

result. Later models with continuous phenotype [Williams

and Noble, 2005; Wood et al., 2006] fail to support

Sugimoto [2002], so if true, it may be a special result for

the RR model.

4.3. Continuous Phenotype Models

[63] Thus far we have only considered the case where the

daisies have fixed phenotypes that express a particular

albedo. As discussed in section 4.1, if a series of individuals

with distinct phenotypes are permitted to exist, then the

system will exclusively select no more than two of the the

existing types and thereby select a homeostatic state. This

contrasts with work where the albedo phenotype is gener-

alized to a continuous range or gray scale.

[64] The use of completely continuous phenotypes has a

mixed history in biology. The continuous phenotype is

expressed by a fundamentally discrete object: the genetic

code. These systems are often more easy to tackle mathe-

matically, as mutation can be approximated as a diffusive

process acting upon the phenotypic space in ignorance of

genetic details such as diploid inheritance, recombination,

and epistatic effects. A model of this type was proposed,

and treated analytically, for Daisyworld by Stöcker [1995]

and has been recently extended by Wood and Coe [2007]. It

is also the basis for many of the spatial models that utilize a

cellular automata to model the daisies described in section 3

[von Bloh et al., 1997].

[65] The key point of Stöcker [1995] is the approximate

solution of a differential equation that is a continuous

analogue of the Carter-Prince equations, namely,

@a að Þ
@t

¼ a að Þ b T að Þ½ �ag � g
� �

þ m
@2a að Þ
@a2

; ð36Þ

where

ag ¼ 1�
Z 1

0

a a0ð Þda0; ð37Þ

where a(a) is the fraction of area taken up by daisies with

albedo a within some small albedo neighborhood of a. The

mutation m gives a measure of the rate of change of albedo

(diffusion in the phenotypic space). The other parameters

and equations are identical to those presented in section 2.2.

Simulating this system leads to Gaussian distributions of

albedos, which also possess a relationship to the mutation

rates, namely, that the occupation of the space (1 � ag)

tends to 1 � g in the limit m ! 1 and that m � sa
4, where

sa is the standard deviation of the albedo distribution.

[66] Stöcker [1995] proves these results analytically by

extending the range of integration to the full range of a and

making an ansatz for the Gaussian distribution. The former

step is valid for small values of m and for driving temper-

atures sufficiently close to optimality. The latter step was

made more precise by Wood and Coe [2007] by making a

linearizing assumption for the Stefan-Boltzmann law, anal-

ogous to that presented in section 2. This enables Stocker’s

equation to be split into two separate equations, one for the

total planetary occupancy and one for the probability

distribution of the daisies. The former has a fixed point

solution, which, when inserted into the latter, yields a

differential equation

@p a; tð Þ
@t

¼ ag b T að Þ½ � � �Gf gp a; tð Þ þ m
@2p a; tð Þ

@a2
; ð38Þ

where �G =
R
p(a; t)b[T(a)]da and ag is the amount of bare

ground in the system at the fixed point. The equation has a

formal general solution for a(a) at steady state, namely, a

parabolic cylinder function Dc(x), which has the property

that D0(x) is simply the Gaussian distribution. For this

special case, which also self-consistently implies that sa is
constant, there is an analogous result to (20)

T ¼ TI

Topt þ qag

2 1�agð Þ
TI þ qag

2 1�agð Þ

2
4

3
5; ð39Þ
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a statement once more of near homeostasis. The binomial

expansion is more accurate for this form of the equation and

also has a weak positive gradient in the regulating regime in

contrast to (21). The system now does not regulate

explicitly through the process of rein control; the daisies

evolve to a single-peaked albedo distribution, which

provides for optimal regulation at prevailing insolation

rather than an ecosystem in which regulation arises from

varying the proportions of distinct daisy types. Regulation

occurs by adaptation of the albedo of individual daisies

rather than relative populations at the ecosystem level.

[67] The analysis also allows us to make a link with

quantitative genetics and the notion of fitness [Wood and

Coe, 2007]. The self-consistent solution of (38) is a Gauss-

ian with constant standard deviation, and this is precisely

the necessary requirement on a distribution in order for the

evolution process to be described by the weighted fitness

approach of Lande [1976]. This is a key result in quantita-

tive genetics and, with the assumptions noted above, ena-

bles the temporal evolution of the mean phenotype to be

described as differential movement in fitness space. For this

approach to be applicable to Daisyworld we must both

identify the appropriate measure of fitness and assume that

the daisies exist in discrete, nonoverlapping generations.

The latter is not an unreasonable assumption for this system,

and we may equate fitness W(a) with lifetime reproductive

success b[T(a)]/g. This construction satisfyingly leads to

the identical results of the exact analysis (39).

[68] A similar connection to the notion of fitness arises

in the original Daisyworld. We make the natural associa-

tion of fitness with (1/a)(@a/@t) and view daisy color as

two alleles of the same gene locus in the same species.

Though the exact form is complicated and certainly

frequency-dependent, the standard analysis [Charlesworth

and Charlesworth, 2003] requires that at coexistence the

fitnesses must be equal. This leads to

agb Twð Þ � g ¼ agb Tbð Þ � g; ð40Þ

which leads to (9) and Saunders’ [1994] solution. It has yet

to be confirmed the extent to which, given the stringency of

the assumptions, this kind of approach may be applied to

more complex evolutionary systems such as those described

in section 4.4.

4.4. Multiple-Character Adaptation

[69] There are two phenotypic daisy traits on which

selection can act: albedo and growth response to tempera-

ture. Thus far we have discussed studies where one or the

other of these traits is allowed to evolve. Some recent work

has considered the case where both traits evolve simulta-

neously [Williams and Noble, 2005; Wood et al., 2006;

Williams, 2006].

[70] Williams and Noble [2005] based their model on the

simplified system of Harvey [2004]. This model is stochas-

tic and individual-based, dividing the available growing

surface into a grid of bare earth patches that might be

colonized by daisies. Each of these bare earth patches is

equivalent to a daisy bed in the Harvey cut-down model but

may only be occupied by a single daisy or may be bare.

Growth is once more reinstated into the model in a similar

way to von Bloh et al. [1997] (see section 3). Local

temperature of a patch TP is given by

@TP
@t

¼ 1� að Þ TS � TPð Þ þ TP; ð41Þ

where TS is the solar temperature. Heat flow can also be

added to this model [Williams, 2006] in a way analogous to

Harvey [2004]. A new relationship between phenotype and

reproductive success was also employed, by which the

probability of a daisy species colonizing a neighboring bare

patch depended inversely on the gap between the local

temperature and its genetically specified preference, so that

daisies with preferences closer to the current environmental

state are more likely to proliferate.

[71] This model follows a similar track to the model of

Robertson and Robinson [1998], i.e., that regulation is lost.

As predicted by Lenton and Lovelock [2000], the introduc-

tion of the physical plausible bounding function (35)

restores homeostasis. Regulation is also observed to occur

in the case of restricted sets of a few possible preferred

growth temperatures. For example, two well-separated

growth temperatures gives rise to a situation where temper-

ature regulation occurs first around one temperature and

then the other.

[72] The comparative rate of mutation has a strong

influence on whether or not temperature regulation occurs

[Williams and Noble, 2005]. If albedo mutates at a rate

much slower than that of preferred growth temperature, then

it is too slow to be effective in providing the varieties of

daisy albedo needed to regulate the global temperature.

However, if albedo mutates at a high enough rate compared

to mutation of the growth function, regulation is restored.

As the mutation rate of albedo relative to that of growth

temperature is increased further, then a situation arises

where sequential regulatory epochs occur, with regulation

about successive growth temperatures (see Figure 10).

[73] Wood et al. [2006] also introduce selection on both

albedo and growth temperature in a 2-D cellular automata

model with space included explicitly. This may be thought

of as a direct extension of the von Bloh et al. [1997] model

introduced in section 3. If the daisies in this 2-D Daisyworld

are allowed to evolve both optimal temperature and albedo,

within some reasonable bounds, then the system follows a

strongly oscillatory trajectory: Total population, mean tem-

perature, and mean albedo all vary in time with a period of

hundreds of daisy generations. The mechanism for this

appears to be that for high-population size, cheats that

inhibit regulation can prosper, causing a population col-

lapse. In the subsequent low-population state, areas that are

by chance free of cheats preferentially survive. These cheat-

free areas then expand, restoring regulation to the point

where cheats reemerge (see Figure 11). The so-called

‘‘cheats’’ emerge naturally in this system: They are, for

example, dark daisies who evolve high preferred tempera-
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ture. Although this degrades the environment, reducing

growth rates of all daisies, the cheats obtain a relative

advantage that is decisive, while growth is primarily deter-

mined by available space.

[74] Despite the internal oscillations, life persists across a

range of insolation in this system. The oscillation period is

determined by the heat capacity and daisy lifetime. It is

speculated that the very clean oscillation arises from there

being a single environment and a single species and that a

more complex ecosystem/environment would lead to better

regulation. The origin of this oscillation is the combination of

both thermal diffusion, including a specific heat capacity, and

the multiple-character adaptation. This model must therefore

lead to a strong thermal decay kernel (equation (32)) suffi-

cient to trigger the Hopf bifurcation that the spatial model

alone is unable to do.

4.5. Altering the Feedbacks

[75] All the studies that we have discussed thus far have

concentrated on the manner in which the daisies may adapt

within the bounds of feedback loops defined in the original

model. Another, less visited approach, is to alter the nature

of the feedbacks in the model and see how this effects the

evolution of the components of the system. This amounts to

producing different special cases for the interaction (or not)

between environmental effects at the individual scale and

the global scale.

[76] Watson and Lovelock [1983] reversed the sign of

interaction between daisy color and planetary temperature

by assuming that convection generated over the warm spots

of the black daisy clumps generates white clouds above

them. In this case the black daisies are still locally warmer

than the white daisies, but both daisy types now cool the

planet. Hence the black daisies always have a selective

advantage over their white compatriots, which they drive to

extinction. Yet planetary temperature is still regulated, albeit

on the cold side of the optimum for growth.

[77] Staley [2002] fundamentally alters the feedback

loops in the system to demonstrate that environmental

conditions and preferred optimal conditions are the stable

solution of a Daisyworld-type system. The Daisyworld

Figure 10. Plot of mean global albedo and temperature against solar forcing from model by Williams and Noble [2005].
When the rate of mutation of albedo is significantly greater than the rate of mutation of preferred growth temperature,
sequential regulatory epochs occur during which the daisy ecology regulates temperature around a particular shared
preference. Competitive exclusion prevents invasion by mutants with different preferences, until increasing luminosity
eventually makes regulation impossible. At this point the ecology collapses, and new species invade, triggering the start of
a new regulatory epoch based around a higher preferred growth temperature. Note that this model is fully stochastic and
uses a different temperature scale than the original Daisyworld model and that in this scenario, there are no constraints on
the temperatures that can potentially be adapted to. Reproduced from Williams and Noble [2005] with kind permission of
Springer Science and Business Media.

Figure 11. A schematic representation of the gene space
and the ‘‘movement’’ around it from the model by Wood et
al. [2006]. A given place on the plot is representative of the
number of daisies with that combination of albedo and
preferred temperature. The thickness of the arrows is a
proxy for the amount of life on the planet at a given place in
the cycle. The turning effect at the ends of oscillation is
related to the decrease in life and the form of the bounded
growth function. This internal cycling of the system is
responsible for the surprisingly clean temperature oscilla-
tions seen in the time series of this model. Reprinted from
Wood et al. [2006] with permission from Elsevier.
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proposed by Staley has only a single daisy type, which he

takes to be white (albedo aw = 0.75) growing on a dark

planet (ag = 0.25). The planetary albedo is thus set by the

proportion of the planet occupied by the daisies not by their

relative populations. The limiting factor in the growth is no

longer the competition for land, but it is competition for

energy that is incident on the surface. The Malthusian

growth rate is thus

_x

x
¼ kE xð Þ 1� T � T0

k

	 
2
" #

� g; ð42Þ

where k and g now give a measure of the growth and death

of the planet’s biota and the heritable characteristic is now

purely T0, the preferred temperature of the daisies. The

energy E(x) is given by the incident energy balance as

before

E xð Þ ¼ SL 1� A xð Þ½ � ¼ sT4: ð43Þ

The fixed point solution of this model, where T = T0, is

proved to be a stable one. The model thus leads to a

homeostatic state, provided the initial conditions are within

a set of prescribed bounds and that the system is allowed to

fully equilibrate.

[78] Bardeen [2004] uses a variable death rate, essentially

an inverted copy of the birth rate function, in order to

greatly strengthen the existing feedbacks in the model based

on the spatial formulation of von Bloh et al. [1997]. This has

a punitive effect when albedo mutation rates are low but

actually increases the viability as the mutation rates in-

crease. The greater selective pressure imposed by this

formulation permits the system to more rapidly weed out

daisies that are not adapting to the changing climate.

[79] An alternative extra feedback is through differential

seeding strategies used by Seto and Akagi [2005]. Here the

bare ground term given by WL, ag, is replaced by a Monod

function of the same quantity, m(ag) = mmaxag/(ag + K). The

Monod constants mmax and K can now be used to param-

eterize alternative strategies of response to the amount of

bare ground in the system. However, this model lacks local

microclimates, i.e., has a single global temperature, and

therefore the regulation reported can only be achieved in a

narrow range of the seeding parameters. If heat transfer is

reinstated, q > 0, then the effect of this feedback change is

small.

5. ECOLOGY

[80] Lotka [1956, p. 16] proposed ‘‘that the physical laws

governing evolution in all probability take on a simpler

form when referred to the system (of organisms plus

environment) as a whole than to any portion thereof.’’

Lovelock [1986] reframed this in terms of an approach to

ecological modeling, suggesting that the inclusion of envi-

ronmental feedback will stabilize the whole system of

environment plus populations. Subsequent work has shown

that the tight coupling of plant growth to planetary temper-

ature in Daisyworld does indeed provide a stable framework

upon which to build a theoretical ecology.

5.1. Nonspatial Examples

[81] Many daisy, rabbit, and fox types were first brought

together by Lovelock [1992] to create a numerical model for

biodiversity. The observation that only two daisy types can

persist at equilibrium suggested that biodiversity may tend

to decrease in a stable system. However, in the real world,

biological systems are continually being perturbed by the

cycles of day and night, the turn of the seasons, changes in

the climate, and innumerable other factors. When a Daisy-

world in equilibrium is perturbed by the introduction of a

herbivore or a sudden change in solar input, a transient burst

of different daisy types appears until the system restabilizes,

with new types dominant. The greater the rate of change of

the perturbation, the greater the resultant biodiversity. These

results suggested that potential biodiversity is an essential

resource for the response to perturbation, while expressed

biodiversity is the sign of a perturbed system; hence the

primary value of biodiversity may be its potential to

regulate against environmental perturbations [Lovelock,

1992].

[82] The zero-dimensional ‘‘ecological Daisyworld’’ was

subsequently developed to explore the implications of

interorganism selection and food web structure for envi-

ronmental self-regulation [Harding and Lovelock, 1996;

Harding, 1999]. Initial work compared the effects of an

unselective herbivore and three different types of selective

herbivore that favor more abundant over less abundant

daisies to varying degrees [Harding and Lovelock, 1996].

Frequency-dependant selection by the herbivores generates

exploiter-mediated coexistence of the daisies and differing

degrees of daisy biodiversity according to the precise

herbivore feeding strategy. The system’s temperature regu-

lation trajectory depends subtly upon which daisies the

herbivores allow to coexist. In contrast, when feedback to

the environment is arbitrarily removed, regulation of both

population dynamics and climate disappear [Harding and

Lovelock, 1996].

[83] The food web was then elaborated by introducing

the three types of selective herbivore together and exper-

imenting with the introduction of a carnivore (which preys

on all three herbivores) [Harding, 1999]. A measure of food

web connectance, the number of herbivore types preying on

each daisy type, was varied between only one (loosely

connected) and all three (fully connected). Increasing food

web connectance was found to increase system stability,

contradicting the traditional result from modeling studies

without feedback to the environment: that increasing com-

plexity decreases stability [Pimm, 1984]. Adding a carni-

vore increases the stability of both population dynamics and

climate regulation, and this too is the opposite result to that

found in most models without feedback to the environment

[Harding, 1999].

[84] Introducing direct interspecies competition in the

original Daisyworld, by having the growth rate of a species

decrease with increasing population size of the other spe-
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cies, can also destabilize global temperature [Cohen and

Rich, 2000] (extended by Pujol et al. [2005]). Strong direct

interspecific competition tends to prevent coexistence of the

black and white daisies, narrowing the range of luminosity

over which there is a switch from black to white daisies and

generating a corresponding sharp decline in temperature.

This effect may be observed in the work of Wood et al.

[2006] when mutation rates are low. In this case the gene

pool is not well mixed, and multiple daisy phenotypes (i.e.,

daisies with different targets for regulation and different

albedos) are able to persist in the population. Antagonistic

interactions between these different and spatially separated

phenotypes prevent effective regulation occurring. In the

model ofWood et al. [2006] this effect is a transient state that

may cause mortality of the entire system but may also evolve

to the oscillatory steady state described in section 4.4.

5.2. Spatial Ecologies

[85] The effects of a herbivore have been studied in the

two-dimensional Daisyworld by von Bloh et al. [1999].

These move randomly on the lattice, eating daisies and

reproducing in a similar way to daisies. Species interact

directly by ingestion of daisies and indirectly through

temperature-dependent reproduction of herbivores. In this

model, herbivores and daisies can coexist, and if the herbi-

vores have no albedo effect, this can inhibit regulation by

reducing the total daisy population. The combination of

herbivores and fragmentation produces four distinct regimes,

conveniently parameterized by herbivore death rate. Three

are simple: For high death rates the herbivores become

extinct or coexist with daisies at a low level controlled by

their death rate. For low death rate, overgrazing causes

ecological collapse. For a combination of intermediate death

rate and fragmentation (below percolation) the herbivore

population increases with increased death rate. This is

because herbivore population is controlled by food supply,

and in a complex environment, overgrazing impairs regula-

tion, which produces additional negative effects by raising

the ambient temperature. Thus, in the fragmenting spatial

Daisyworld, herbivores tend to destabilize the system if they

can persist. However, their effects on an unfragmented

system are much less significant.

[86] Two identical, evolving species of daisy competing

for finite space cannot coexist indefinitely. If such a system

is created, the difference in population between the two

follows a random walk until one population is reduced to

zero. Thus coexisting multiple species must have different

characteristics. M. A. Clark and G. J. Ackland (unpublished

work, 2002, mentioned briefly by Ackland et al. [2003])

introduced a second plant species (poppies) that had the

possibility of evolving the ability to feed on the daisies in

return for a growth penalty. No stable two-species solution

exists for this model: Either the growth penalty was too

large and the poppies became extinct, or it was too small

and the poppies evolved herbivory, ate all the daisies, and

then evolved back to being simple plants. This showed that

an evolvable ability, even if unexpressed in steady state, can

reduce regulation.

[87] Ackland [2004] introduced a second evolving plant

species (trees) in 2-D Daisyworld with a lower optimal

temperature and no competition for space. This increases

the range of regulation in a way analogous to the multispe-

cies model [Lenton and Lovelock, 2001]. With a small

difference in optimal temperatures, coexistence occurs with

temperature regulated at a compromise value throughout.

With a larger difference the space fragments into cool

regions of trees and warm regions of daisies. Ackland

[2004] argues that as in one dimension the stability of

single species versus coexistence solutions depends on

which maximizes the amount of life. The coexistence

solutions have unusual albedo distributions, trees being

strongly biased toward higher albedo and daisies biased to

lower albedo. The overall regulation in the system arises

from the balance in competition between the species rather

than symbiotic cooperation.

[88] Complex dynamics also emerges when differing

daisy phenotypes are induced by a growth function with

multiple maxima [Lynn, 2005] in a two-dimensional spatial

model. The system does not simply select the maxima with

the largest value: Lower, broader peaks often outcompete

narrower higher ones. Interfacial effects between the com-

peting regions dominate the dynamics in the resulting model

and inhibit the ability of the model to consistently find the

seemingly optimal solution.

[89] In general, increasing the complexity of the ecology

in Daisyworld seems to make little difference to the funda-

mental behavior of the model. Given the notorious instability

of interacting populations in most conventional community

ecology models [Pimm, 1991], the number of populations

that can be simultaneously supported in a regulating Daisy-

world is remarkable. This situation was an early illustration

of how feedback loops may stabilize ecological models of

increasing complexity [see, e.g., Ackland and Gallagher,

2004]; the Daisyworld case appears to be sufficient but not

necessary for inducing ecological stability. In Daisyworlds

though, the primary source of system stability remains the

coupling between daisies (representing biota) and planetary

temperature (representing the environment). Within a model

of many interacting species the mathematical distinction

between a ‘‘well-connected species’’ and ‘‘the environment’’

is moot: The necessity of stabilization by feedbacks is

common to the two models.

6. APPLICATIONS

6.1. Maximum Entropy Production (MEP) and
Daisyworld

[90] The method of parameterizing heat flow in the

original Daisyworld model (the mechanism by which heat

moves from the black daisies into the bare ground and then

into the white daisies) is similar to that employed in energy

balance climate models [e.g., North et al., 1981]. The

temperature difference between the black, white daisies,

and the bare ground is determined by the difference in

albedo and the diffusivity of the atmosphere. The actual

mechanisms for heat transport in the climate system are
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more complex as they involve turbulent eddies in the

atmosphere and ocean.

[91] Paltridge [1975] successfully reproduced the Earth’s

latitudinal temperature profile in an energy balance climate

model by assuming that the rate of diffusion was that which

maximized the rate of entropy production via latitudinal

heat transport. The maximum entropy production principle

(MEPP) postulates that nonequilibrium, open dissipative

systems (that exchange energy with their environment) such

as the Earth’s climate may be in states that maximize the

rate of entropy production [Ozawa et al., 2003]. If this is

true, it is not necessary to understand the detailed internal

dynamics of such systems in order to make accurate models

and predictions.

[92] Pujol [2002] assumes MEPP to be valid and explores

implications for Daisyworld. One of the constraints operat-

ing on the system is that the short-wave energy from the star

that enters and is redistributed within Daisyworld must

ultimately leave as long-wave emissions. Pujol [2002]

formulates the energy balance equations thus:

aisT4
i ¼ aiSL 1� Aið Þ þ Qi ð44Þ

for i = w, and b, and g.

Qw þ Qg þ Qg ¼ 0: ð45Þ

There is an infinite set of possible heat flows Qi that will

satisfy equation (29). Pujol adopts those heat flows that will

maximize the rate of nonradiative entropy production,

which is the sum of heat flows divided by temperatures:

EP ¼
X
i

Qi

Ti
ð46Þ

for i = w, b, and g. Following Watson and Lovelock [1983],

Pujol formulates heat flow with the following:

Qi ¼ ai sq� Sð Þ A� Aið Þ ð47Þ

for i = w, b. The albedo of the daisies is fixed for any value

of solar forcing. As given byWatson and Lovelock [1983], q

is regarded as a fixed parameter. Consequently, in order to

maximize entropy production it is the coverage of the

daisies that must adjust.

[93] In this MEPP Daisyworld the daisies are present

over a wider range of solar luminosities, and hysteresis is

no longer observed; there is no sudden initial population

explosion of the black daisies or final population collapse

of the white daisies. Instead, there is a progressive decline

in the white daisy population (at the upper limit of

regulation) and consequently an absence of observed hys-

teresis in the model. The same principle applies with low

luminosity and the onset of black daisy growth. The key

result is that heat flows that maximize the rate of entropy

production also maximize the range of solar insolation over

which the daisies grow. Furthermore, in the original Daisy-

world the temperature of the planet decreases in response

to increasing insolation (equation (21)) when both daisy

types are present. In the MEPP Daisyworld the planetary

temperature increases slightly and is regulated within a

narrower range.

[94] Toniazzo et al. [2004] present a more general for-

mulation that allows for an arbitrary number of daisy types.

It begins with the reformulation of the equations (3) and (4)

that determines the rate of change of daisy coverage with

the following:

biqi ¼ f; ð48Þ

where bi = bi/gi is the normalized growth and qi = Ti/To,i,

with To,i being the optimum growth temperature for the ith

daisy type. Here f = 1/(1 � Siai) and is the inverse of the

amount of bare ground. The temperature of the ith daisy

type can then be found with

Ti ¼ To;ib
�1
i fð Þ: ð49Þ

[95] As given by Pujol [2002], heat flow is a function of

daisy coverage, solar insolation, and albedo. The calcula-

tion for entropy production is essentially equivalent to

equation (30), both approaches being effectively identical to

the technique used to determine entropy production via

meridional heat transport by Lorenz et al. [2001] and Lorenz

[2002]. The core finding is similar to Pujol [2002] in that

when heat flows are adjusted in order to maximize entropy

production, the range of daisy growth over luminosity is

increased.

[96] Toniazzo et al. [2004] explore the effects of the

MEPP with an increased number of daisy types. It is shown

that the MEPP solution only favors a maximum of two

daisy types coexisting. These daisy types will have maxi-

mum daisy albedo contrast. This leads to the counterintu-

itive situation where the temperature of an intermediate

albedo daisy that would be at the optimum and so have

maximum birth rate is not present at all. The intermediate

daisy would exchange little heat with its surroundings, and

so lower rates of entropy production would be realized,

whereas the case with darker (warmer) and lighter (cooler)

daisy types operating as a piecewise two-species system is

able to produce much higher rates of heat flow and so

entropy production.

[97] Furthermore, the optimum growth rate for a two-

daisy system can be altered so that the optimum growth

temperatures for the dark and light daisy types are differ-

ent. Solutions are presented in which dark-colored daisies

are warm-loving and light-colored daisies are cool-loving

and also where dark daisies are cool-loving and light

daisies are warm-loving. It is found that greatest entropy

production is achieved with a combination of dark warm-

loving and light cool-loving daisies, as this represents the

coupling of two positive feedback mechanisms. In a rein

control context (section 2.4), MEPP selects the strongest

reins that provide the greatest heat flux and greatest rates of

entropy production.
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[98] Rates of entropy production in a 2-D cellular autom-

ata Daisyworld were assessed by Ackland [2004] in which

thermal entropy production, EP is found with

EP tð Þ ¼
XDQ

T

¼
X
j

X
k

DT T xj; yj; t
� �

� T xk ; yk ; tð Þ
� �

2T xj; yj; t
� � ð50Þ

for each jth cell and its eight kth neighbors. Owing to the

fixed thermal diffusivity in the model, thermal entropy

production is assessed by subjecting the system to an abrupt

forcing in luminosity. If MEPP holds, the perturbation

should lead to the thermal entropy production increasing as

it seeks to find the new maximum value. This may or may

not be proceeded by a relative drop immediately after the

abrupt change. This effect is not seen, suggesting that the 2-

D Daisyworld does not maximize the rate of thermal

entropy production.

[99] The work in this area emphasizes both the generality

and simplicity of the Daisyworld model and its ability to be

used as a starting point for studies of different phenomena.

Though rigorous analysis [Dewar, 2003, 2004] implies that

Daisyworld, with is varying input fluxes, violates the

assumptions of MEPP, the modeling in this section provided

useful insights into the ongoing development of this novel

hypothesis.

6.2. Alternative Maximization Principles

[100] Instead of assuming MEP, Ackland [2004] formu-

lates and tests the following contrary hypotheses: (1) that

Daisyworld self-organizes to maximize the rate of entropy

production and (2) that Daisyworld self-organizes in order

to maximize the amount of life on the planet. Two types of

entropy production are defined: biodiversity and thermal

entropy production. A related study by Gaucherel [2006]

uses the exergy principle from ecology as well as the MEP

hypothesis to focus attention on the spatial patterns in a

cellular automata Daisyworld [Lenton and van Oijen, 2002].

[101] Ackland et al. [2003] formulates biodiversity entro-

py NA ln NA as a measure of the information entropy of the

distribution of black and white daisies upon the surface of

the 2-D planet, where NA is the number of daisies with

albedo A. Maximizing this gives the mean ensemble distri-

bution

hNAi ¼
NebAR 1

0
ebAdA

; ð51Þ

with N being the total number of daisies and b found with

hAi ¼
Z 1

0

ebAdA ¼
Z 1

0

AebAdA: ð52Þ

[102] Ackland [2004] extends this formulation to consider

biodiversity entropy production. In order to assess whether

Daisyworld self-organizes to maximize biodiversity entropy

or, alternatively self-organizes to maximize the coverage of

daisies, the fixed death rate is changed to a function of daisy

temperature with the temperature that gives the minimal

death rate (Td) different from the temperature that gives the

maximal growth rate (Tg). The MEPP predicts that biodi-

versity entropy be produced at the greatest possible rate thus

requiring the greatest growth rate and hence Tg, whereas the

maximization of life requires the minimization of the death

of the daisies and hence Td. Ackland finds that the temper-

ature is regulated close to Td and hence concludes that

maximum life (rather than MEPP) applies to Daisyworld.

[103] In the work of WL the coexistence region becomes

unstable with respect to the single-daisy solution at exactly

the point where the single-daisy solution produces more

daisies than the total for the coexistence. If one adds

additional (discrete) daisy colors to the WL model (Ackland

[2004], following Lenton and Lovelock [2000]), the equi-

librium solution alternates between single-daisy and two-

daisy solutions, with the stable solution being the one that

has most daisies, other solutions being vulnerable to inva-

sion (Figure 9). A similar effect can also been seen in more

complex models where species with two distinct optimal

temperatures are able to coexist [Ackland, 2004]. Here two

qualitatively different solutions were observed, coexistence

at a compromise temperature or separation into single-

species regions at their optimal temperature, but the stable

solution was the one where the total area covered by daisies

was the largest.

6.3. Daisyworld as a Control System

[104] The rein control mechanism inherent in Daisyworld

has begun to find diverse applications both in understanding

other self-regulating systems and in engineering new ones.

Saunders et al. [1998], Koeslag et al. [1999], and Saunders

et al. [2000] argue that the regulation of some human

physiological variables are analogous to Daisyworld. To

understand blood glucose regulation, the black and white

daisies are replaced by the hormones insulin and glucagon,

which ‘‘pull’’ in opposing directions the shared variable of

blood glucose, which replaces planetary temperature. This

analysis allows Saunders et al. [1998] to predict salient

features of type I and type II diabetes, with these conditions

representing either a single or both control reins malfunc-

tioning. Saunders et al. [2000] extend this analysis into a

more general model in which the same mechanism is used

to model the control of ionized calcium by parathyroid

hormone and calcitonin.

[105] Many engineering problems demand an effective

self-regulator, and Daisyworld has been applied to such

problems in both information technology and robotics. Dyke

and Harvey [2005] embed a Daisyworld control system into

a simulated robotic agent. A novel ‘‘cable car’’ is devel-

oped, which performs phototaxis (light-following behavior)

[Braitenberg, 1984]. A solar panel on top of the car

provided power in response to the location of a light source

that moved overhead. Output from the solar panel is used to

turn a winding motor that moves the car to the left. Another

car is added, being identical to the first except its winding

motor moves in the opposite direction and so the car moves
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to the right. When the two cable cars are connected together

via a spring, the reproduction of the simplified ‘‘two-bed’’

Daisyworld model introduced by Harvey [2004] is com-

pleted, and the cable cars are able to track a light source

over a range of positions just as the daisies maintain global

temperature to within a narrow band over a range of

luminosities.

6.4. Vegetation Modeling With Hydrology

[106] Baldocchi et al. [2005] have created a rather differ-

ent 2-D Daisyworld by introducing wet and dry ‘‘daisies’’

with an additional property of surface resistance and in-

cluding latent and sensible heat exchange in the vertical

energy balance. They exclude horizontal heat transport on

the grounds that vertical heat exchange dominates in their

system of interest (savannahs). The air temperature is fixed,

thus altering the focus of the model from environmental

regulation to the scaling up of heterogeneous landscape

properties. The model uses a Gaussian growth response to

temperature, makes probability of death an exponential

function of temperature, and introduces density-dependent

death (an occupied cell dies if all neighboring cells are

occupied). The wet and dry ‘‘daisy’’ types have identical

albedos and are distinguished by their low (wet) or high

(dry) surface resistances. The wet ‘‘daisies’’ are analogous

to trees, and the dry ‘‘daisies’’ are analogous to grasses.

Bare soil has higher albedo and surface resistance than

either plant type. Baldocchi et al. [2005] experiment with

random seeding and regeneration of an empty grid from

clusters in opposite corners (analogous to recolonization

after disturbance by, e.g., fire). In the latter case the

resulting system resembles a savannah in its scaling expo-

nent for surface properties.

6.5. Beyond Daisyworld

[107] Daisyworld successfully shows how self-regulation

might emerge, but the assumptions highlighted throughout

this text mean that the model is not generally applicable. For

those important scientific questions it cannot address, new

models are required. These should vary the underlying

assumptions of the Daisyworld model to a greater extent

than just tweaking parameters or altering the sign of a

particular feedback. However, more than 2 decades after

the formulation of Daisyworld, few truly alternative models

have appeared.

[108] The Guild model of Downing and Zvirinsky [1999]

[see also Downing, 2003] simulates the evolutionary emer-

gence of a bacterial community and the recycling of a suite

of nutrients. The world has prescribed inputs and outputs of

nutrients in arbitrary ratios and is seeded with a single

bacterial genotype that specifies the phenotypic nutrient

consumption pattern. New genotypes, constrained within a

large genetic space, arise through mutation and crossover

during bacterial reproduction, as defined by a genetic

algorithm. What emerges is a system that recycles different

nutrients by different amounts such that their ratio tends

toward the preference of the organisms. The Guild model

differs from Daisyworld in its emphasis on nutrient cycling

rather than temperature regulation and in its improved

representation of evolution. However, the two models still

share key underlying assumptions. Organisms still maintain

a local buffer against the global environment, and individual

‘‘selfish’’ adaptations still always contribute to global reg-

ulation. All organisms are also assumed to have the same

constant preferred nutrient ratios. When these ratios are

allowed to evolve, they do so toward current conditions,

thus inhibiting regulation.

[109] The GUILD model chemistry also lacks thermody-

namic constraints. The subsequent metabolically abstract

microorganism system model (METAMIC) addressed this

by introducing an abstract chemistry with sensible thermo-

dynamics [Downing, 2002, 2003]. The organism is treated

as a cell in which energy-yielding and energy-demanding

reactions occur and which exchanges materials with the

environment by diffusion through the cell wall. Hence there

is still a (realistic) distinction between the local (intracellu-

lar) and the global (surrounding) environment. The organ-

isms’ preference is defined (arbitrarily) in terms of a

combination of the concentrations of the four smallest

chemical compounds. Thermodynamic constraints result in

a natural set of metabolic pathways. Only in 20 out of 100

cases is there a strong tendency toward global regulation,

which occurs when the benefits outweigh the costs. This is

not entirely surprising as the model system only has a

restricted source of free energy in the form of large

incoming chemical compounds that can be broken down

into smaller ones. There is no large source of free energy

analogous to sunlight being captured in photosynthesis.

Hence there is never much free energy with which regula-

tory acts could be performed, and thus the model system

only represents an early stage in the history of life and a

minority of today’s ecosystems.

7. DISCUSSION

[110] Daisyworld was originally conceived as a parable, a

workable example that demonstrated that global regulation

was possible because of underlying interactions of a bio-

sphere. More specifically, Daisyworld was set up to show

that regulation of the environment could in theory arise

without top-down control or teleology. In this respect the

model can be described as a success. Although there are

many simplifications and assumptions inherent in the mod-

el, the body of published work that has since tested its

limitations and explored various extensions to it has found

regulation in Daisyworld to be a robust phenomenon.

However, some assumptions in the model are not necessar-

ily widely applicable in the real world.

[111] Daisyworld contains a fixed relationship between

local benefit and global regulation, whereby the only

phenotypic daisy traits that give reproductive success are

those that also contribute to global regulation. Thus black

daisies do well in cooler conditions and by doing so

contribute to raising of the temperature of the planet. White

daisies do well in warmer conditions and cool the planet.

Where are the daisies that do well in cool conditions and
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make the planet cooler or those that do well in warm

conditions and make the planet warmer? This kind of

positive niche construction effect is often observed in nature

[Odling-Smee et al., 1996]. Existing variants of the model

give a limited glimpse at these other special cases as

discussed in section 4.

[112] In the real world, traits of organisms that alter the

global environment are often selected because they offer a

local advantage unrelated to their global effect. The global

effect is essentially a by-product of the local effect, as in the

case of marine algae, which produce and utilize dimethyl

sulphide probably for the benefit it gives them in resisting

adverse osmotic pressure, irrespective of the effect it has on

the global sulphur cycle [Charlson et al., 1987]. In Daisy-

world we might imagine local selection acting on some

hidden aspect of the daisies such as leaf area or seed

dispersal, rendering the environment-altering daisy trait

selectively neutral (barring any epistatic gene interactions).

This was studied by Williams [2006] where daisy albedo

was made selectively neutral by using random selection

between individuals to decide which daisy species colo-

nized bare patches; unsurprisingly, no regulation of global

temperature was observed, since there was no selection

pressure to push mean albedo away from a neutral ‘‘grey’’

color, and this prevented an adaptive ecological response to

different levels of solar luminosity. Staley [2002] also

addresses the separation of local and global effects by

removing any local environmental effect of the daisies,

but he considers only one global environmental effect

(equivalent to that of white daisies) with adaptation of

optimum growth temperature, and regulation is retained.

A more complete approach would consider different global

environmental effects decoupled from local selection.

[113] Another key assumption of the Daisyworld model is

that daisies always grow in patches large enough to create

their own microclimate. This assumption is held throughout

the Daisyworld literature and is taken to apply even when

populations are vanishingly small (such as when the first

black daisy seeds break their dormancy as the planet

warms). The importance of the assumption of localized

microclimates lies in the ability of different colored daisies

to maintain a local temperature that deviates from the

ambient abiotic level. Whatever their effect on the global

climate, if a daisy species cannot create a local temperature

that differs from the global temperature, they have no way

of outcompeting other species. Without this competition

(and the ecological balance it creates), global temperature

regulation will fail.

[114] In Daisyworld the absence of a local microclimate

can be represented in the WL model by setting q = 0, while

in the work of Ackland et al. [2003] and Williams [2006]

(physically unrealistic) models can be created where heat

dissipation is perfect and instantaneous, that is, any local

temperature gradient created by a daisy is dissipated across

the whole planet before any effects on local growth rates are

experienced. In this scenario the entire surface of the planet

has the same temperature, although the global temperature

may be altered by daisy albedo. The homogeneity of

growing conditions thus created removes the ability for

selection to act on the daisy population, and the regulatory

action of the daisy population is lost. Similarly, if the von

Bloh et al. [1997] 2-D model is applied with random seed

dispersal, the offspring are unlikely to have the same

environment as their parents, and regulation fails. However,

in a separate study [Nordstrom et al., 2004] the assumption

of perfect local homeostasis of temperature has been

replaced with a more Earth-like formulation of energy

balance, and global temperature regulation is retained.

[115] Such assumptions are examples of the general

assumption of a particular kind of structure to the feedback

between daisies and their environment. It appears that when

this structure is perturbed as described above, the result is a

loss of global temperature regulation in the Daisyworld

system. However, other kinds of perturbation to the feedback

structure of the model do not destroy regulation, though they

may change its nature (see the discussion of Watson and

Lovelock [1983] and Staley [2002] in section 4.5). The rein

control analogy, antagonistic or otherwise, provides a useful

visualization of the feedback structure. In systems with

continuous phenotype, where the rein control analogy is less

apt, the link to population genetics provides a different route

to understanding and hopefully a greater acceptance of the

model in mainstream theoretical biology.

[116] One way of interpreting the dynamics of the differ-

ent Daisyworld models is as the interplay of processes

occurring on three different timescales, i.e., the external

driving (tD), the population dynamics (tP), and evolution

(tE). In the work of WL, tD � tP and tE ! 1. Hence the

environment is regulated by changes in the populations. In

subsequent criticisms of Daisyworld, finite tE of the

inherited characteristics are considered. Typically, the direct

evolution of the biota to suit the external conditions is found

rather that the indirect regulation of the environment to suit

the biota. Most models have a single stable state for given

external driving, so short-lived spikes in the driving (tD �
tP) that return to the initial driving cause a temporary

change in populations and evolvable characteristic. If tD
< tP,tE, then the system can never reach a stable state, and

behavior is entirely dependent on initial conditions.

[117] Daisyworld is a model that is complex enough to

exhibit interesting behavior yet simple enough to admit

analytic work. This has positioned the model as a starting

point for further studies of many different aspects of

geophysics, of which we have covered the majority (to

date) in this article. We hope that this trend will continue;

one research area where Daisyworld may be relevant is

understanding how the changing biosphere may be incor-

porated into more detailed models of the physical environ-

ment and ultimately into Earth system models. Changes in

population, such as desertification or afforestation, can

happen relatively quickly on a geological timescale. Addi-

tionally, even processes thought to be independent of the

biota on long timescales, most obviously, silicate rock

weathering [Walker et al., 1981], are now believed to be

heavily influenced and mediated by biota [Lovelock and

Watson, 1982; Schwartzman and Volk, 1989].
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[118] Evolutionary timescales may also be important in

understanding the interaction between the biota and the

physical world; after all, microbes account for around half

the biomass on our planet and have short turnover times.

Recent work has indicated that they contribute dispropor-

tionately to the cycling of abiotic compounds, increasing

their relative environmental impact further still [Volk, 1998].

The control of the environment by life is now a central

principle for practical work in astrobiology where Daisy-

world has attracted attention; if atmospheric composition on

extrasolar planets is found to be out of equilibrium, this can

be taken as a surrogate measurement for the presence of life

[Lovelock, 1965, 1975]. This suggests that remote atmo-

spheric analysis is (the only?) a practical method for

detecting extraterrestrial life.

[119] In this article we have reviewed and described

Daisyworld and the numerous extensions and critiques that

have been leveled at it in the 20 or more years since its

inception. The existence of detailed analytic solutions

backed by comprehensive modeling work has now led to

a concrete body of scientific research that may now be

viewed as a topic in its own right. There are still a few

details of the regulatory effects and feedback structures of

the Daisyworld model that warrant ongoing attention, but

the primary facets of the model are now well understood.

Yet to truly examine the plausibility of global regulation by

the biota, which was the greater question that inspired the

creation of the original Daisyworld model, we need models

and theoretical results that show the occurrence (or not) of

biologically mediated environmental regulation in a variety

of scenarios with a variety of feedback structures. The

creation of new models that challenge the fundamental

assumptions of Daisyworld is surely a pressing and poten-

tially revealing direction for future research.
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