

BOUNDARY LAYER METEOROLOGY

Prof. Ivana Stiperski, Dr. Manuela Lehner Department of Atmospheric and Cryospheric Sciences

Chapter 5 Conservation Equations of Turbulent flows

Content

Chapter 5.1

- Conservation equations for Mean Variables
- Conservation equations for Turbulent Variables

Chapter 5.2

• Closure problem and Closure schemes

Statistical Treatment of Turbulence

Statistical Treatment of Turbulence:

- \rightarrow Reynolds decomposition and averaging
- \rightarrow conservation equations:

2nd Order Moments

\rightarrow 2 approaches for treating these new variables

- I: Physical approach:
 - further development of conservation equations
 - \rightarrow simplify (assumptions), solve
 - ightarrow numerical solutions
 - ightarrow higher order
- II: Similarity theory

w'*θ*', *w*'*q*' and *u*'*w*', ...

ightarrow scale analysis

 \rightarrow *characteristics* of the result?

 \rightarrow I + II combined (e.g. numerical models, often)

Starting point

Turbulent scales:

- \rightarrow millimeter
- \rightarrow seconds

chapter on spectral characteristics

numerical modeling:

- \rightarrow resolution **milli**meters.....
- \rightarrow indeed being done (DNS)
- ightarrow extremely CPU time consuming

\rightarrow statistical treatment:

Reynolds decomposition and – averaging to separate turbulence and mean

Procedure

Conservation Equations for mean variables

- Step 1: Formulate the conservation equation (Table 5.1).
- Step 2: Simplify where appropriate.
- Step 3: Apply Reynolds decomposition.
- Step 4: Reynolds-average the resulting equation to obtain the *conservation* equation for the mean flow variable.
- Step 5: Express the result of step 4 in *flux form* (if appropriate).
- Step 6: Subtract the result of step 4 from that of step 3 to obtain the conservation equation for the fluctuating variable.
- Step 7: Multiply the result of step 6 with another fluctuating variable to obtain an equation for the corresponding second order moment.
- Step 8: Reynolds-average the result of step 7 to obtain the conservation equation for this mean second order moment.
- (Step 9: Repeat steps 6-8 to obtain conservation equations for even higher order moments).

Conservation Equations for higher order moments

Conservation equations

Momentum:	$\frac{\partial u_i}{\partial t} + u_j \frac{\partial u_i}{\partial x_j} = -\delta_{i3}g + f_c \varepsilon_{ij3}u_j - \frac{1}{\rho}\frac{\partial p}{\partial x_i} + \frac{1}{\rho}\frac{\partial \sigma_{ij}}{\partial x_j}$	(5.1a)
Energy:	$\frac{\partial \theta}{\partial t} + u_j \frac{\partial \theta}{\partial x_j} = v_\theta \frac{\partial^2 \theta}{\partial x_j^2} - \frac{1}{\rho c_p} \frac{\partial NR_j}{\partial x_j} - \frac{L_v E}{\rho c_p} + \frac{R_c}{\rho c_p}$	(5.1b)
Specific humidity:	$\frac{\partial q}{\partial t} + u_j \frac{\partial q}{\partial x_j} = \frac{E}{\rho}$	(5.1c)
Trace gas:	$\frac{\partial C}{\partial t} + u_j \frac{\partial C}{\partial x_j} = \mathbf{Q} - \mathbf{S}$	(5.1d)
Mass:	$\frac{\partial \rho}{\partial t} + u_j \frac{\partial \rho}{\partial x_j} = -\rho \frac{\partial u_j}{\partial x_j}$	(5.1e)
Equation of State:	$p = R_a \cdot \rho \cdot T$	(5.1f)
universität innsbruck	BLM Innsbruck I Stiperski I 2020	8

Equation of state

$$p = R_a \cdot \rho \cdot T$$

$$R_a = 286 J k g^{-1} K^{-1}$$

 \rightarrow Reynolds decomposition

$$p = \overline{p} + p'$$

$$\rightarrow \rho = \overline{p} + p'$$
insert
$$T = \overline{T} + T'$$

$$0$$

$$\overline{p} + p' = R_a(\overline{p}\overline{T} + \overline{p}T' + p'\overline{T} + p'T')$$

$$\rightarrow \text{ average again:}$$

$$\overline{\rho} = R_a(\overline{\rho}\overline{T} + \rho' T')$$

Equation of state

$$\overline{p} = R_a(\overline{p}\overline{T} + \overline{p'T'}) \qquad \overline{p}\overline{T} \gg \overline{p'T'}$$

$$\overline{p} \approx R_a(\overline{p}\overline{T})$$
To get fluctuations p': $\overline{p} + p' = R_a(\overline{p}\overline{T} + \overline{p}T + p'\overline{T} + p'T')$

$$p' = R_a(\overline{p}T + p'\overline{T} + p'T') \qquad \text{divide by}$$

$$p'/R_a = (\overline{p}T' + p'\overline{T} + p'T') \qquad \overline{p}/R_a = \overline{p}\overline{T}$$

$$\frac{p'}{\overline{p}} = \frac{T}{\overline{T}} + \frac{p'}{\overline{p}} + \frac{p'T'}{\overline{p}\overline{T}}$$

Equation of state

$$p' = \mathcal{O}(0.1 \text{hPa}) \Rightarrow p'/\overline{p} = \mathcal{O}(10^{-4})$$

 $T' = \mathcal{O}(1 \text{K}) \Rightarrow T'/\overline{T} = \mathcal{O}(10^{-2})$

therefore must:

$$\rho'/\overline{\rho} = \mathcal{O}(10^{-2})$$

$$\rightarrow \text{replace} \qquad \frac{\rho'}{\overline{\rho}} \approx -\frac{T'}{\overline{T}} \qquad \rightarrow \text{easier to determine} \qquad \frac{\rho'}{\overline{\rho}} \text{ by } \frac{T'}{\overline{T}}$$

Conservation equations

Momentum:	$\frac{\partial u_i}{\partial t} + u_j \frac{\partial u_i}{\partial x_j} = -\delta_{i3}g + f_c \varepsilon_{ij3}u_j - \frac{1}{\rho}\frac{\partial p}{\partial x_i} + \frac{1}{\rho}\frac{\partial \sigma_{ij}}{\partial x_j}$	(5.1a)
Energy:	$\frac{\partial \theta}{\partial t} + u_j \frac{\partial \theta}{\partial x_j} = v_\theta \frac{\partial^2 \theta}{\partial x_j^2} - \frac{1}{\rho c_\rho} \frac{\partial NR_j}{\partial x_j} - \frac{L_v E}{\rho c_\rho} + \frac{R_c}{\rho c_\rho}$	(5.1b)
Specific humidity:	$\frac{\partial q}{\partial t} + u_j \frac{\partial q}{\partial x_j} = \frac{E}{\rho}$	(5.1c)
Trace gas:	$\frac{\partial C}{\partial t} + u_j \frac{\partial C}{\partial x_j} = Q - S$	(5.1d)
Mass:	$\frac{\partial \rho}{\partial t} + u_j \frac{\partial \rho}{\partial x_j} = -\rho \frac{\partial u_j}{\partial x_j}$	(5.1e)
Equation of State:	$p = R_a \cdot \rho \cdot T$	(5.1f)

universität innsbruck

Conservation of mass

$$\frac{\partial \rho}{\partial t} + \frac{\partial (\rho u_j)}{\partial x_j} = 0 \quad \longleftarrow$$

$$\frac{d\rho}{dt} + \rho \frac{\partial u_j}{\partial x_j} = 0$$

incompressibility:

$$\frac{d\rho}{dt} << \frac{\partial u_1}{\partial x_1}, \frac{\partial u_2}{\partial x_2}, \frac{\partial u_3}{\partial x_3}$$

Reynoldsdecomposition and averaging

 $\partial \overline{u}$ ∂X

Conservation of mass: Incompressibility

$$\rightarrow$$
 let: $\frac{\partial u_i(\vec{x},t)}{\partial x_i} = 0$ summed!

 \rightarrow special form of mass conservations equation \rightarrow Atmosphere: 'always and everywhere' fulfilled

possibilities:

- 1. air exits towards the top
- 2. flow accelerates
- 3. density in A increases

1 & 2: incompressible flow

Incompressibility: 'Flux Form'

Conservation equations \rightarrow Advection term:

identity:

$$\frac{\partial(u_j\chi)}{\partial x_j} = \chi \frac{\partial u_j}{\partial x_j} + u_j \frac{\partial \chi}{\partial x_j}$$

$$\Rightarrow u_j \frac{\partial \chi}{\partial x_j} = \frac{\partial (u_j \chi)}{\partial x_j}$$

advection term corresponds to flux divergence (average and fluctuations)

in particular:

$$u_{j}^{\prime}\frac{\partial\chi^{\prime}}{\partial x_{j}}=\frac{\partial(u_{j}^{\prime}\chi^{\prime})}{\partial x_{j}}$$

'turbulent advection' term: \rightarrow divergence of turbulent flux

Conservation equations

Momentum:	$\frac{\partial u_i}{\partial t} + u_j \frac{\partial u_i}{\partial x_j} = -\delta_{i3}g + f_c \varepsilon_{ij3}u_j - \frac{1}{\rho}\frac{\partial p}{\partial x_i} + \frac{1}{\rho}\frac{\partial \sigma_{ij}}{\partial x_j}$	(5.1a)
Energy:	$\frac{\partial \theta}{\partial t} + u_j \frac{\partial \theta}{\partial x_j} = v_\theta \frac{\partial^2 \theta}{\partial x_j^2} - \frac{1}{\rho c_p} \frac{\partial NR_j}{\partial x_j} - \frac{L_v E}{\rho c_p} + \frac{R_c}{\rho c_p}$	(5.1b)
Specific humidity:	$\frac{\partial q}{\partial t} + u_j \frac{\partial q}{\partial x_j} = \frac{E}{\rho}$	(5.1c)
Trace gas:	$\frac{\partial C}{\partial t} + u_j \frac{\partial C}{\partial x_j} = Q - S$	(5.1d)
Mass:	$\frac{\partial \rho}{\partial t} + u_j \frac{\partial \rho}{\partial x_j} = -\rho \frac{\partial u_j}{\partial x_j}$	(5.1e)
Equation of State:	$\boldsymbol{\rho} = \boldsymbol{R}_a \cdot \boldsymbol{\rho} \cdot \boldsymbol{T}$	(5.1f)
universität innsbruck	BLM Innsbruck I Stiperski I 2020	16

Conservation of momentum

$$\frac{\partial u_i}{\partial t} + u_j \frac{\partial u_i}{\partial x_j} = -\delta_{i3}g + f_c \varepsilon_{ij3}u_j - \frac{1}{\rho} \frac{\partial \rho}{\partial x_i} + \frac{1}{\rho} \frac{\partial \sigma_{ij}}{\partial x_j}$$

 \rightarrow equations: u, v, w

- I: local temporal change
- II: advection
- III: gravity $\neq 0$ for i = 3
- IV: Coriolis term
- V: pressure gradient acceleration
- VI: molecular friction

Procedure

- Step 1: Formulate the conservation equation (Table 5.1).
- Step 2: Simplify where appropriate.
- Step 3: Apply Reynolds decomposition.
- Step 4: Reynolds-average the resulting equation to obtain the *conservation* equation for the mean flow variable.
- Step 5: Express the result of step 4 in *flux form* (if appropriate).
- Step 6: Subtract the result of step 4 from that of step 3 to obtain the conservation equation for the fluctuating variable.
- Step 7: Multiply the result of step 6 with another fluctuating variable to obtain an equation for the corresponding second order moment.
- Step 8: Reynolds-average the result of step 7 to obtain the conservation equation for this mean second order moment.
- (Step 9: Repeat steps 6-8 to obtain conservation equations for even higher order moments).

Simplifications

1. Newtonian fluid: Term VI

$$\frac{1}{\rho} \frac{\partial \sigma_{ij}}{\partial \mathbf{X}_j} = v \frac{\partial^2 u_i}{\partial \mathbf{X}_j^2}$$

2. Boussinesq Approximation

$$\frac{\rho'}{\overline{\rho}} << 1 \quad \Rightarrow \text{ density fluctuations negligible}$$

but: one term $\frac{\rho'}{\overline{\rho}} g$ is not negligible

 \rightarrow

Bussinesq approximation

In practice this means:

- 1. replace $\rho \rightarrow \overline{\rho}$
- 2. replace $g \rightarrow g(1 \theta'/\overline{\theta})$

It is valid if

PBL height small with respect to 'scale Height' (approx. 8km)

$$\checkmark \qquad \frac{T'}{\overline{T}} <<1, \ \frac{\rho'}{\overline{\rho}} <<1$$

- Flow is incompressible
- Stratification is not too extremely stable

Conservation of momentum

$$\frac{\partial u_i}{\partial t} + u_j \frac{\partial u_i}{\partial x_j} = -\delta_{i3}g + f_c \varepsilon_{ij3}u_j - \frac{1}{\rho}\frac{\partial \rho}{\partial x_i} + \frac{1}{\rho}\frac{\partial \sigma_{ij}}{\partial x_j}$$

simplifications:

$$\frac{\partial u_i}{\partial t} + u_j \frac{\partial u_i}{\partial x_j} = -\delta_{i3}g(1 + \frac{\theta'}{\overline{\theta}}) + f_c \varepsilon_{ij3}u_j - \frac{1}{\overline{\rho}}\frac{\partial \rho}{\partial x_i} + v \frac{\partial^2 u_i}{\partial x_j^2}$$

Reynolds decomposition and averaging:

$$\frac{\partial \overline{u}_{i}}{\partial t} + \overline{u}_{j} \frac{\partial \overline{u}_{i}}{\partial x_{j}} + \frac{\partial u_{i}}{\partial x_{j}} = -\delta_{i3}g + f_{c}\varepsilon_{ij3}\overline{u}_{j} - \frac{1}{\overline{\rho}}\frac{\partial \overline{\rho}}{\partial x_{i}} + v\frac{\partial^{2}\overline{u}_{i}}{\partial x_{j}^{2}}$$

 \rightarrow 'overbars' (averaging)

 \rightarrow one new term (three, actually – summed)

 \rightarrow density fluctuations disappeared....

Conservation of momentum

Original equation:

Reynolds decomposition: (i.e. introduction of turbulence)

 \rightarrow new term(s): flux divergence

Conservation equations

Momentum:	$\frac{\partial u_i}{\partial t} + u_j \frac{\partial u_i}{\partial x_j} = -\delta_{i3}g + f_c \varepsilon_{ij3}u_j - \frac{1}{\rho}\frac{\partial \rho}{\partial x_i} + \frac{1}{\rho}\frac{\partial \sigma_{ij}}{\partial x_j}$	(5.1a)
Energy:	$\frac{\partial \theta}{\partial t} + u_j \frac{\partial \theta}{\partial x_j} = v_\theta \frac{\partial^2 \theta}{\partial x_j^2} - \frac{1}{\rho c_p} \frac{\partial NR_j}{\partial x_j} - \frac{L_v E}{\rho c_p} + \frac{R_c}{\rho c_p}$	(5.1b)
Specific humidity:	$\frac{\partial q}{\partial t} + u_j \frac{\partial q}{\partial x_j} = \frac{E}{\rho}$	(5.1c)
Trace gas:	$\frac{\partial C}{\partial t} + u_j \frac{\partial C}{\partial x_j} = Q - S$	(5.1d)
Mass:	$\frac{\partial \rho}{\partial t} + u_j \frac{\partial \rho}{\partial x_j} = -\rho \frac{\partial u_j}{\partial x_j}$	(5.1e)
Equation of State:	$p = R_a \cdot \rho \cdot T$	(5.1f)

universität innsbruck

Conservation of energy

 \rightarrow Energy conservation corresponds to conservation of θ

$$\frac{\partial \theta}{\partial t} + U_{j} \frac{\partial \theta}{\partial x_{j}} = v_{\theta} \frac{\partial^{2} \theta}{\partial x_{j}^{2}} - \frac{1}{\rho c_{p}} \frac{\partial NR_{j}}{\partial x_{j}} - \frac{L_{v}E}{\rho c_{p}} + \frac{R_{c}}{\rho c_{p}}$$

- | & ||: total temporal change
 - III: molecular diffusion of heat
 - IV: radiation divergence
 - V: phase change of water
 - VI: 'everything else' (chemical reactions,

antropogenic sources..)

Conservation of energy

Reynolds decomposition and averaging:

$$\frac{\partial \overline{\theta}}{\partial t} + \overline{u}_j \frac{\partial \overline{\theta}}{\partial x_j} + \frac{\partial}{\partial x_j} (\overline{u'_j \theta'}) = v_\theta \frac{\partial^2 \overline{\theta}}{\partial x_j^2} + \frac{1}{\overline{\rho} c_\rho} \overline{QR}$$

Conservation of scalars

'Tracer constituents':

$$\frac{\partial \overline{C}}{\partial t} + \overline{u}_j \frac{\partial \overline{C}}{\partial x_j} + \frac{\partial}{\partial x_j} (\overline{u'_j C'}) = \overline{Q} - \overline{S}$$

Conservation equations for mean variables in turbulent flow

Momentum:	$\frac{\partial \overline{u}_i}{\partial t} + \overline{u}_j \frac{\partial \overline{u}_i}{\partial x_j} + \frac{\partial}{\partial x_j} (\overline{u_i' u_j'}) = -\delta_{i3}g + f_c \varepsilon_{ij3} \overline{u}_j - \frac{1}{\overline{\rho}} \frac{\partial \overline{\rho}}{\partial x_i} + \nu \frac{\partial^2 \overline{u}_i}{\partial x_j^2}$	(5.16)
Energy:	$\frac{\partial \overline{\theta}}{\partial t} + \overline{u}_j \frac{\partial \overline{\theta}}{\partial x_j} + \frac{\partial}{\partial x_j} (\overline{u'_j \theta'}) = v_\theta \frac{\partial^2 \overline{\theta}}{\partial x_j^2} + \frac{1}{\overline{\rho} c_\rho} \overline{QR}$	(5.23)
Specific humidity:	$\frac{\partial \overline{q}}{\partial t} + \overline{u}_j \frac{\partial \overline{q}}{\partial x_j} + \frac{\partial}{\partial x_j} (\overline{u_j' q'}) = \frac{\overline{E}}{\overline{\rho}}$	(5.24)
Trace gas:	$\frac{\partial \overline{C}}{\partial t} + \overline{u}_j \frac{\partial \overline{C}}{\partial x_j} + \frac{\partial}{\partial x_j} (u'_j C') = \overline{Q} - \overline{S}$	(5.25)
Mass:	$\frac{\partial \overline{u}_j}{\partial x_j} = 0 \qquad ; \qquad \frac{\partial u'_j}{\partial x_j} = 0$	(5.8)
Equation of State:	$\overline{p} = R_a \overline{p} \overline{T}$	(5.4)
universität innsbruck	BLM Innsbruck I Stiperski I 2020	27

Summary

Reynolds decomposition and averaging

 $\bar{u}_{3}=0$

 \rightarrow =0

v'w'

 $w'q', w'\theta'$

- new term: divergence of the turbulent fluxes
- from advection terms:

u'w',

horiz.

 \rightarrow =0

homogenous

Procedure

Conservation Equations for mean variables

- \rightarrow In each of the conservation equations:
- \rightarrow new terms: flux divergences
- \rightarrow find conservation equations for these new variables
- \rightarrow example: second moments
- Step 6: Subtract the result of step 4 from that of step 3 to obtain the conservation equation for the fluctuating variable.
- Step 7: Multiply the result of step 6 with another fluctuating variable to obtain an equation for the corresponding second order moment.
- Step 8: Reynolds-average the result of step 7 to obtain the conservation equation for this mean second order moment.
- (Step 9: Repeat steps 6-8 to obtain conservation equations for even higher order moments).

Conservation Equations for higher order moments

completely expanded equation:

$$\frac{\partial \overline{u}_{i}}{\partial t} + \frac{\partial u_{i}}{\partial t} + \overline{u}_{j} \frac{\partial \overline{u}_{i}}{\partial x_{j}} + \overline{u}_{j} \frac{\partial u_{i}}{\partial x_{j}} + u_{j}, \frac{\partial \overline{u}_{i}}{\partial x_{j}} + u_{j}, \frac{\partial u_{i}}{\partial x_{j}} = -\delta_{i3}g + \delta_{i3}\left(\frac{\theta'}{\overline{\theta}}\right)g + f_{c}\varepsilon_{ij3}\overline{u}_{j} + f_{c}\varepsilon_{ij3}u_{j}' - \frac{1}{\overline{\rho}}\frac{\partial\overline{\rho}}{\partial x_{i}} - \frac{1}{\overline{\rho}}\frac{\partial\rho'}{\partial x_{i}} + v\frac{\partial^{2}\overline{u}_{i}}{\partial x_{j}^{2}} + v\frac{\partial^{2}u_{i}}{\partial x_{j}^{2}}$$

subtract averaged equation:

$$\frac{\partial \overline{u}_i}{\partial t} + \overline{u}_j \frac{\partial \overline{u}_i}{\partial x_j} + \frac{\partial}{\partial x_j} (\overline{u_i u_j}) = -\delta_{i3}g + f_c \varepsilon_{ij3}\overline{u}_j - \frac{1}{\overline{\rho}} \frac{\partial \overline{\rho}}{\partial x_i} + v \frac{\partial^2 \overline{u}_i}{\partial x_j^2}$$

\rightarrow result: ./.

 \rightarrow conservation equations for fluctuation:

 $\frac{\partial u_i}{\partial t} + \overline{u}_j \frac{\partial u_i}{\partial x_i} + u_j^{*}, \frac{\partial \overline{u}_i}{\partial x_i} + u_j^{*} \frac{\partial \overline{u}_i}{\partial x_i} - \frac{\partial u_i^{*} u_j^{*}}{\partial x_i} =$ multiply by 2u' $+\delta_{i3}\left(\frac{\theta'}{\overline{\theta}}\right)g + f_c \varepsilon_{ij3}u_j' - \frac{1}{\overline{\rho}}\frac{\partial p'}{\partial x_i} + v\frac{\partial^2 u_i'}{\partial x_i^2}$,

$$2u_{i}^{'}\frac{\partial u_{i}}{\partial t} + 2\overline{u}_{j}u_{i}^{'}\frac{\partial u_{i}}{\partial x_{j}} + 2u_{i}^{'}u_{j}^{'}, \frac{\partial \overline{u}_{i}}{\partial x_{j}} + 2u_{i}^{'}u_{j}^{'}\frac{\partial u_{i}}{\partial x_{j}} - 2u_{i}^{'}\frac{\partial u_{i}u_{i}}{\partial x_{j}} = \frac{1}{8}$$

$$+ 2\delta_{i3}u_{i}^{'}\left(\frac{\theta'}{\overline{\theta}}\right)g + 2f_{c}\varepsilon_{ij3}u_{i}^{'}u_{j}^{'} - 2\frac{u_{i}^{'}}{\overline{\rho}}\frac{\partial p'}{\partial x_{i}} + 2vu_{i}^{'}\frac{\partial^{2}u_{i}^{'}}{\partial x_{j}^{2}}$$
introduced

 \rightarrow 'cosmetics'

 \rightarrow Reynolds averaging

$$\frac{\partial \overline{u_{i}^{\prime 2}}}{\partial t} + \overline{u}_{j} \frac{\partial \overline{u_{i}^{\prime 2}}}{\partial x_{j}} + 2\overline{u_{i}^{\prime} u_{j}^{\prime}} \frac{\partial \overline{u}_{i}}{\partial x_{j}} + \overline{u_{j}^{\prime}} \frac{\partial \overline{u_{i}^{\prime 2}}}{\partial x_{j}} =$$

$$+ 2\delta_{i3} \overline{u_{i}^{\prime}} \left(\frac{\theta^{\prime}}{\overline{\theta}}\right) g + 2f_{c} \varepsilon_{ij3} \overline{u_{i}^{\prime} u_{j}^{\prime}} - 2\frac{\overline{u_{i}^{\prime}} \frac{\partial p^{\prime}}{\overline{\rho}} \frac{\partial p^{\prime}}{\partial x_{i}}}{\overline{\rho} \frac{\partial x_{i}}{\partial x_{i}}} + 2v \overline{u_{i}^{\prime}} \frac{\partial^{2} u_{i}^{\prime}}{\partial x_{j}^{2}}$$
summed!

\rightarrow flux form

$$\frac{\partial \overline{u_i'^2}}{\partial t} + \overline{u}_j \frac{\partial \overline{u_i'^2}}{\partial x_j} = -2\overline{u_i'u_j'} \frac{\partial \overline{u}_i}{\partial x_j} - \frac{\partial \overline{u_j'u_i'^2}}{\partial x_j} + 2\overline{\lambda}_j \frac{\partial \overline{u_i'}}{\partial x_j} + 2\overline{\lambda}_j \frac{\partial \overline{u_j'}}{\partial x_j} + 2\overline{\lambda}_j$$

- \rightarrow sum: conservation equation for TKE! (*TKE* = $0.5\rho u_{ii}^{\prime 2}$)
- \rightarrow 3 conservation equations for velocity variances....

Have 1 equation, summed (i=1,2,3)

$$\frac{\partial \overline{u_{i}^{\prime 2}}}{\partial t} + \overline{u}_{j} \frac{\partial \overline{u_{i}^{\prime 2}}}{\partial x_{j}} = \dots \longrightarrow \frac{\partial \overline{u_{1}^{\prime 2}}}{\partial t} + \frac{\partial \overline{u_{2}^{\prime 2}}}{\partial t} + \frac{\partial \overline{u_{3}^{\prime 2}}}{\partial t} + \dots$$
all terms with i=1: =A
all terms with i=2: =B
all terms with i=3: =C
$$A+B+C=0$$

$$A+B+C=0$$

$$A=0$$

$$B=0$$

$$C=0$$

Higher order moments: velocity variances

3 conservation equations for velocity variances

$$\begin{split} \begin{array}{c} \textbf{u}_{1} \vdots & \frac{\partial \overline{u_{1}^{\prime 2}}}{\partial t} + \overline{u}_{j} \frac{\partial \overline{u_{1}^{\prime 2}}}{\partial x_{j}} = -2\overline{u_{1}u_{j}} \frac{\partial \overline{u_{1}}}{\partial x_{j}} - \frac{\partial \overline{u_{j}u_{1}^{\prime 2}}}{\partial x_{j}} \\ & + 2f_{c}\overline{u_{1}u_{2}^{\prime}} - \frac{2}{\overline{\rho}} \frac{\partial \overline{u_{1}^{\prime 2}}}{\partial x_{1}} + \frac{2}{\overline{\rho}} \overline{\rho}' \frac{\partial u_{1}^{\prime 1}}{\partial x_{1}} - 2\nu \overline{u_{1}} \frac{\partial^{2} \overline{u_{1}^{\prime 2}}}{\partial x_{1}^{2}} \\ \hline \textbf{u}_{2} \vdots & \frac{\partial \overline{u_{2}^{\prime 2}}}{\partial t} + \overline{u}_{j} \frac{\partial \overline{u_{2}^{\prime 2}}}{\partial x_{j}} = -2\overline{u_{2}}\overline{u_{2}}\overline{u_{j}} \frac{\partial \overline{u_{2}}}{\partial x_{j}} - \frac{\partial \overline{u_{j}}\overline{u_{2}^{\prime 2}}}{\partial x_{j}} \\ & - 2f_{c}\overline{u_{1}}\overline{u_{2}} - \frac{2}{\overline{\rho}} \frac{\partial \overline{u_{2}^{\prime 2}}}{\partial x_{2}} + \frac{2}{\overline{\rho}} \overline{\rho}' \frac{\partial \overline{u_{2}^{\prime 2}}}{\partial x_{2}} - 2\nu \overline{u_{2}} \frac{\partial^{2} \overline{u_{2}^{\prime 2}}}{\partial x_{2}^{2}} \\ \hline \textbf{u}_{3} \vdots & \frac{\partial \overline{u_{3}^{\prime 2}}}{\partial t} + \overline{u}_{j} \frac{\partial \overline{u_{3}^{\prime 2}}}{\partial x_{j}} = -2\overline{u_{3}}\overline{u_{j}} \frac{\partial \overline{u_{3}}}{\partial x_{j}} - \frac{\partial \overline{u_{j}}\overline{u_{3}^{\prime 2}}}{\partial x_{2}} - 2\nu \overline{u_{2}} \frac{\partial^{2} \overline{u_{2}^{\prime 2}}}{\partial x_{2}^{2}} \\ \hline \textbf{u}_{3} \vdots & \frac{\partial \overline{u_{3}^{\prime 2}}}{\partial t} + \overline{u}_{j} \frac{\partial \overline{u_{3}^{\prime 2}}}{\partial x_{j}} = -2\overline{u_{3}}\overline{u_{j}} \frac{\partial \overline{u_{3}}}{\partial x_{j}} - \frac{\partial \overline{u_{j}}\overline{u_{3}^{\prime 2}}}{\partial x_{j}} \\ & + \frac{2g}{\overline{\theta}} \overline{u_{3}}\overline{\theta}' - 2\overline{u_{3}}\overline{u_{j}}} \frac{\partial \overline{u_{3}}}{\partial x_{j}} - \frac{2}{\overline{\rho}} \frac{\partial \overline{u_{3}}}{\partial x_{3}} + \frac{2}{\overline{\rho}} \overline{\rho}' \frac{\partial \overline{u_{3}}}{\partial x_{3}} - 2\nu \overline{u_{3}}} \frac{\partial^{2} \overline{u_{3}^{\prime 2}}}{\partial x_{3}^{2}} \\ \end{array}$$

Higher order moments

 \rightarrow turbulence: 'introduced' through Reynolds decomposition

- \rightarrow have eq. for mean turbulent flow
- \rightarrow even for higher moments....

Closure problem

conservation equation for mean flow:

$$\frac{\partial \overline{u}_i}{\partial t} + \overline{u}_j \frac{\partial \overline{u}_i}{\partial x_j} + \frac{\partial}{\partial x_j} (\overline{u'_i u'_j}) = -\delta_{i3}g + f_c \varepsilon_{ij3} \overline{u}_j - \frac{1}{\overline{\rho}} \frac{\partial \overline{\rho}}{\partial x_i} + v \frac{\partial^2 \overline{u}_i}{\partial x_j^2}$$

 \rightarrow 2nd moments appear! (new variables)

 \rightarrow conservation equation for new variable...

$$\frac{\partial \overline{u_{i}^{\prime 2}}}{\partial t} + \overline{u}_{j} \frac{\partial \overline{u_{i}^{\prime 2}}}{\partial x_{j}} = -2 \overline{u_{i}^{\prime} u_{j}^{\prime}} \frac{\partial \overline{u}_{i}}{\partial x_{j}} - \underbrace{\partial u_{j}^{\prime} u_{i}^{\prime 2}}{\partial x_{i}} \rightarrow 3rd \text{ moments appear!}$$
$$+ 2\delta_{i3} \overline{u_{i}^{\prime}} \left(\frac{\theta^{\prime}}{\overline{\theta}}\right) g + 2f_{c} \varepsilon_{ij3} \overline{u_{i}^{\prime} u_{j}^{\prime}} - \frac{2}{\overline{\rho}} \overline{u_{i}^{\prime}} \frac{\partial p^{\prime}}{\partial x_{i}} + 2v \overline{u_{i}^{\prime}} \frac{\partial^{2} u_{i}^{\prime}}{\partial x_{j}^{2}}$$

Closure problem

Before:

$$\frac{\partial u_i}{\partial t} + u_j \frac{\partial u_i}{\partial x_j} = -\delta_{i3}g + f_c \varepsilon_{ij3}u_j - \frac{1}{\rho}\frac{\partial \rho}{\partial x_i} + \frac{1}{\rho}\frac{\partial \sigma_{ij}}{\partial x_j}$$

- ightarrow no turbulence
- ightarrow 7 variables (u, v, w, p, q, heta, ho)
- \rightarrow 7 equations

After:

$$\frac{\partial \overline{u}_{i}}{\partial t} + \overline{u}_{j} \frac{\partial \overline{u}_{i}}{\partial x_{j}} + \frac{\partial}{\partial x_{j}} (\overline{u_{i}'u_{j}'}) = -\delta_{i3}g + f_{c}\varepsilon_{ij3}\overline{u}_{j} - \frac{1}{\overline{\rho}} \frac{\partial \overline{\rho}}{\partial x_{i}} + v \frac{\partial^{2}\overline{u}_{i}}{\partial x_{j}^{2}}$$

- \rightarrow turbulence introduced
- ightarrow 12 new variables (auto-)covariances
- \rightarrow conservation equations for covariances:
 - \rightarrow even more new variables...

Closure problem!

Description of a turbulent flow:

1) must: resolve millimeters / seconds

 \rightarrow cpu-problem

2) Reynolds decomposition / averaging

 \rightarrow closure problem

way out:

 \rightarrow turbulence closure!

Turbulence Closure

 \rightarrow at some point: break the vicious circle 'new equations \rightarrow even more new variables'!

for example at first order:

 \rightarrow parameterize the unknown 2nd moments

$$\rightarrow \overline{u'w'} = 0$$
, or $u'\overline{w'} = const...$

ightarrow or on the basis of similarity theory

 $\rightarrow \dots$

Turbulence Closure

Closure of order N:

- conservation equations up to order N
- (N+1)th moments parameterized

$$M_{n+1}^{j_{n+1}} = f(M_n^{j_n}, M_{n-1}^{j_{n-1}}, ..., M_1^{j_1}, P_{j_{n+1}})$$

function f: parameterization

- \rightarrow dependent on the moments up to Nth order
- ightarrow need not to consider all
- \rightarrow parameters P_j

Turbulence Closure

Parameterization:

- consistent with the unknown in terms of \rightarrow units
 - \rightarrow tensor symmetries
- invariant with respect to transformations
 - \rightarrow e.g. coordinate transformation
- no violation of overarching principles
 - \rightarrow e.g. energy conservation

Overarching principle: energy conservation

- \rightarrow integration over 100 years....
- \rightarrow energy conservation of the complete system!

First order closure

First order closure

- \rightarrow conservation equations up to mean variables (1st moments)
- \rightarrow parameterization (co-) variances (2nd moments)

approach:

remember....

$$\sigma_{ij}^{\text{mod}} = \rho v \mathbf{S}_{ij} = \rho v \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_j} \right)$$

shear stress tensor proportional to deformation rate

... in analogy:

First order closure

... in analogy:

$$\frac{\tau_{ij}}{\overline{\rho}} = -(K_m)_{ij} \left(\frac{\partial \overline{u}_i}{\partial x_j} + \frac{\partial \overline{u}_j}{\partial x_j} \right)$$

turbulent shear stress tensor proportional to **mean** deformation rate

Reynolds stress tensor

factor of proportionality: 'K' \rightarrow 'K theory'

$$\frac{\tau_{ij}}{\overline{\rho}} = -(K_m)_{ij} \left(\frac{\partial \overline{u}_i}{\partial x_j} + \frac{\partial \overline{u}_j}{\partial x_j} \right)$$

proportionality factor: 'K'

 \rightarrow 'K-Theory'

 \rightarrow minus sign: transport 'against' the gradients

Intermediate summary

Reynolds decomposition and averaging:

 \rightarrow additional terms in the budget equations (new variables!)

 \rightarrow in each: flux divergence terms

Dilemma

- \rightarrow if turbulence to be resolved: need (Super Computer)³
- \rightarrow if Reynolds decomposition and averaging: closure problem

Closure problem: the higher order conservation equations one works out, the larger is the number of new unknowns introduced

Closure of order n: consider budget eqns up to order n \rightarrow parameterize moments of order n+1

Intermediate summary

1st order closure:

 \rightarrow equations up to 1 (i.e., budget eqns for mean variables)

 \rightarrow parameterize the 2nd order moments

$$\rightarrow$$
 i.e., u'w', w' θ ', w'q', ...

1st order closure, example:

energy equation:

$$\frac{\partial \overline{\theta}}{\partial t} + \overline{u}_{j} \frac{\partial \overline{\theta}}{\partial x_{j}} + \frac{\partial}{\partial x_{j}} (\overline{u'_{j}\theta'}) = v_{\theta} \frac{\partial^{2} \overline{\theta}}{\partial x_{j}^{2}} + \frac{1}{\overline{\rho}c_{\rho}} \overline{QR}$$

$$\Rightarrow \text{ K-closure:} \quad \overline{w'\theta'} = -K_{H} \frac{\partial \overline{\theta}}{\partial x_{3}}$$

If coordinate system || mean wind, and horizontally homogenous:

$$\frac{\tau_{13}}{\overline{\rho}} = \overline{u'_1 u'_3} = -(K_m)_{13} \frac{\partial \overline{u}_1}{\partial x_3} \longrightarrow K_m \text{ instead of } (K_m)_{13}$$

general (variable a):

$$\overline{w'a'} = -K_{a3}\frac{\partial \overline{a}}{\partial x_3} \qquad (\overline{v'a'} = -K_{a2}\frac{\partial \overline{a}}{\partial x_2}, \overline{u'a'} = -K_{a1}\frac{\partial \overline{a}}{\partial x_1})$$

Everything OK?

 \rightarrow problem shifted!

 \rightarrow need K instead of 2nd order moment

Determination of K:

- K= const. (old models)

'not the best solution...'
(Stull 1988)

- K from Prandtl/ v. Kàrmàn theory

just neutral....

- K from similarity theory (exercise)

Formulations for K_m

Table 6-4. Examples of parameterizations for the eddy viscosity, K, in the boundary layer.

Neutral Surface Layer:			
K = constant	not the best parameterization		
$K = u_*^2 T_o$ $K = U^2 T_o$ $K = k z u_*$ $K = k^2 z^2 [(\partial \overline{U} / \partial z)^2 + (\partial \overline{V} / \partial z)^2]^{1/2}$	where u _* is the friction velocity where T _o is a timescale where k is von Karman's constant from mixing-length theory		
		$K = I^2 (\partial \overline{U} / \partial z)^2$	where $l = k(z+z_0)/\{1+[k(z+z_0)/\Lambda]\}$, $\Lambda = length scale$
		Diabatic Surface Layer (generally,	K _{statically unstable} > K _{neutral} > K _{statically stable})
		$K = k z u_* / \phi_M (z/L)$	where ϕ_M a dimensionless shear (see appendix A
	and L is the Obukhov length (appendix A)		
$K = k^2 z^2 \left[(\partial \overline{U} / \partial z) - (L_*/z)^{1/6} \{ (15g / \overline{\theta}_v)^2 + (L_*/z)^{1/6} \} \right]$	$[] \cdot [\partial \overline{\Theta_v} / \partial z]^{1/2}]$ for statically stable conditions, where $L_* = -\Theta u_*^2 / (15 \text{ kg } \Theta_*)$		
Neutral or Stable Boundary Laye	nr		
K = constant	see Ekman Spiral derivation in next subsection		
$K = K(h) + [(h-z)/(h-z_{SL})]^2 \{K(z_{SL}) - K(h-z_{SL})\}$	$(h) + (z - z_{SL})[\partial K/\partial z _{z_{SL}} + 2(K(z_{SL}) - K(h))/(h - z_{SL})]\}$		
	this is known as the O'Brien cubic polynomial		
	approximation (O'Brien, 1970), see Fig 6-2, where		
	z _{SL} represents the surface layer depth.		
Unstable (Convective) Boundary	Layer:		
K = 1.1 [(R _c - Ri) / ² / Ri] $ \partial \overline{U} / \partial z $	for $\partial \overline{\theta_v} / \partial z > 0$ where $l = kz$ for $z < 200$ m and		
K = (1 - 18 Ri) ^{-1/2} / ² ∂Ū/∂z	for $\partial \overline{\theta_{l}}/\partial z < 0$ /= 70 m for z > 200 m.		

Stull (1988)

BLM | Innsbruck | Stiperski | 2020

Numerical Model Approximation for Anelastic 3-D Flow: $\mathsf{K} = (0.25 \,\Delta)^2 \cdot \left| 0.5 \,\Sigma_{\mathsf{i}} \,\Sigma_{\mathsf{j}} \left[\partial \overline{U}_{\mathsf{j}} \partial \mathsf{x}_{\mathsf{j}} + \partial \overline{U}_{\mathsf{j}} \partial \mathsf{x}_{\mathsf{j}} - (2/3) \delta_{\mathsf{i}\mathsf{j}} \Sigma_{\mathsf{k}} (\partial \overline{U}_{\mathsf{k}} \partial \mathsf{x}_{\mathsf{k}}) \right]^2 \right]^{1/2}$

where Δ =grid size

The important K's:

$$\overline{u'w'} = -K_m \frac{\partial \overline{u}}{\partial x_3} \qquad \text{momentum} \Rightarrow \text{'eddy viscosity'}$$

$$\overline{w'\theta'} = -K_H \frac{\partial \overline{\theta}}{\partial x_3} \qquad \text{sensible heat} \Rightarrow \text{'eddy conductivity'}$$

$$\overline{w'q'} = -K_q \frac{\partial \overline{q}}{\partial x_3} \qquad \text{latent heat}$$

$$\overline{w'C'} = -K_c \frac{\partial \overline{C}}{\partial x_3} \qquad \text{tracers} \Rightarrow \text{'eddy diffusivity'}$$

Properties of the K's:

$$K_m \neq K_H \approx K_q \approx K_C$$

relatively well known (easy to determine) more difficult to determine only in recent years

$$\overline{w'C'} = -K_c \frac{\partial \overline{C}}{\partial x_3} \longrightarrow K_c = -\overline{w'C'} / \frac{\partial \overline{C}}{\partial x_3}$$

ightarrow need to measure trubulent fluctuations, C'

- → proton transfer reaction time-of-flight mass spectrometer, PTR ToF-MS
- ightarrow Innsbruck Atmospheric Observatory, IAO

Properties of the K's:

 $\rightarrow \rm K_m$ most closely to 'external variable' $\rightarrow \rm K_H$ modifies stability

 $K_{unstable} > K_{neutral} > K_{stable}$ • for all

- for all variables
- efficiency of exchange

Height dependence (from similarity theory)

 \rightarrow limitation of K-Theory:

ightarrow under certain conditions correct solution not attainable

universität innsbruck

1.5 order closure

1.5-order Closure

- \rightarrow first order: turbulence entirely in K...
- \rightarrow cannot reproduce fast temporal changes
- \rightarrow 2nd order.... (laborious, lots of new equations) \rightarrow compromise:
- conservation equation for TKE
- conservation equation for dissipation rate $~~ \epsilon$

$$\overline{u'w'} = -K_m \frac{\partial \overline{u}}{\partial x_3} \qquad \text{but:} \quad K_m \propto \frac{\overline{e}^2}{\varepsilon}$$

still:

1.5-order Closure

 \mathcal{E}

still:
$$\overline{u'w'} = -K_m \frac{\partial \overline{u}}{\partial x_3}$$

but: $K_m \propto \frac{\overline{e}^2}{\partial x_3}$

 \rightarrow 'few' higher order moments considered

$$TKE = \frac{1}{2}\rho \overline{u'^{2}}, \quad e = TKE / \rho$$

→ still: 'flux proportional mean gradients' → order: 1.5

Non-local Closure

ightarrow Up to now: all closures 'local'

- → local= flux of the height z parameterized with the gradient of height z
- → more general: moment of order N+1 at location is \vec{r} parameterized using moments of order N at location
- ightarrow this is not always fortunate
- \rightarrow example: convective boundary layer

 \vec{r}

Non-local Closure

 \rightarrow CBL: exchange through large eddies [O(z_i)]

Non-local Closure

CBL: pragmatic approach: \rightarrow 'counter gradient term'

$$\overline{w'\theta'}(z_f) = -K_H(\frac{\partial\overline{\theta}}{\partial x_3} - \gamma_\theta)$$

 γ_θ from conservation equation for θ

 \rightarrow general: non-local closure:

 \rightarrow Transilient Turbulence Theory (Stull)

Transilient Turbulence Theory

Principle: Moments to be parameterized for each 'grid cell': influenced by variables at all possible other grid points (non-local!)

 $\frac{concentration' C}{\overline{C}_{i}(t + \Delta t)} = \sum_{j=1}^{n} M_{ij}(t, \Delta t) \overline{C}_{j}(t)$

Transilient Turbulence Theory

$$\frac{\text{concentration' C:}}{\overline{C}_{i}(t + \Delta t) = \sum_{j=1}^{n} M_{ij}(t, \Delta t) \cdot \overline{C}_{j}(t)}$$

$$\frac{\text{flux at box i:}}{\overline{w'C'}(i) = (\frac{\Delta z}{\Delta t}) \sum_{k=1}^{i} \sum_{j=1}^{n} M_{ij}(\overline{C}_{i} - \overline{C}_{j})}$$

→ combination of the 'exchange' of any box with all the others

\rightarrow determination of M_{ii}???

Transilient Turbulence Theory

Which closure?

The higher order the closure, the better?

- 13rd order....
 - \rightarrow equations up to the 13th moment
 - \rightarrow 14th moment parameterized....
 - \rightarrow no idea about these moments!
 - \rightarrow statistically highly uncertain!

 \rightarrow practice:

- many atmospheric models: 1st order!
- elaborate models: 1.5 or 2nd order

 \rightarrow operational NWP (WRF, COSMO, Arome, ... : 1.5 order

Which closure?

Which closure?

→ small-scale turbulence: local closure ok SL, neutral PBL stable PBL

→ large eddies (CBL): at least 1.5 or 2nd order CBL canopies

alternative: Large Eddy Simulation

Large eddy simulation (LES)

Reynolds averaged models:

→ entire turbulence spectrum parameterized

Large Eddy Simulation

- \rightarrow filtered equations
- \rightarrow large eddies resolved
- → only small ones parameterized

Large eddy simulation (LES)

LES:

ightarrow resolves big eddies

- \rightarrow turbulence model dependent on Δx !
- \rightarrow highly CPU-intensive!

Direct Numerical Simulations (DNS)

Summary: Closure

- \rightarrow fundamental problem
- \rightarrow closure approach necessary
- \rightarrow local closures (K-theory, e ε , ..) \rightarrow non-local closures
- \rightarrow expensive alternative: LES \rightarrow DNS

Summary

Turbulence in the conservation equations

- \rightarrow new terms: higher moments
- \rightarrow flux divergence
- Closure problem!
 - \rightarrow closure: order N
 - \rightarrow often 1. order (K-theory)
 - \rightarrow local and non-local closures (CBL!)
- each numerical model needs a closure

 → NWP model, climate model, (but also all the others...)
 → the closure is the turbulence model
 → it describes the earth-atmosphere interaction
- Idealized solution: Ekman Spiral
 - \rightarrow Chapter A....

