

BOUNDARY LAYER METEOROLOGY

Prof. Ivana Stiperski, Dr. Manuela Lehner Department of Atmospheric and Cryospheric Sciences

Chapter 4 Similarity Theory

Similarity Theory

 \rightarrow one example shown: MOST (Surface Layer) \rightarrow in the boundary layer: different *Scaling Regimes* exist

→ Boundary Layer in 'phase space' → horizontally homo- geneous (presumed) → non-dimensional height vs. non-dimensional stability

Holtslag and Nieuwstadt (1986)

Scaling regimes: Unstable

Scaling regimes: Stable

Scaling regimes

ightarrow 'always' Surface Layer (MOST) at the bottom

- \rightarrow regimes with variables: 'successful'
- ightarrow regimes without: 'not successful'

'successful' : $\rightarrow T_f =$ 'forcing time scale' $\rightarrow T_m =$ Time scale 'mean profile'

 $\rightarrow T_f >> T_m$: quasi stationary

quasi stationary \leftrightarrow successful

Scaling regimes: The successful Three

 \checkmark

The successful three

→ Surface Layer (MOST) (including Free Convection limit)

ightarrow Mixed Layer

Processes:

- $W'\theta'_o$ heating at the ground
 - **Z**_i entrainment
- $g/\overline{\theta}$ buoyancy
 - z length scale

$$\frac{\overline{a}}{a_{\star}} = f_a(\frac{z}{z_i})$$

velocity scale:

 \rightarrow dimensional analysis:

$$W_{\star} = \left(\frac{g}{\overline{\theta}} \overline{W' \theta'}_{o} Z_{i}\right)^{1/3}$$

temperature scale:

 \rightarrow dimensional analysis:

$$\theta_{*_{CBL}} = W' \theta'_{o} / W_{*}$$

CBL → different measurements (symbols)

CBL → different measurements (symbols)

Skewness w: Mixed Layer

Mixed layer

- → scaling of concentration in ML: not 'similar' for different emission heights
- ightarrow not only local dispersion process
- ightarrow non-local (large eddies) mixing

Deardorff and Willis (1982)

Summary: Mixed Layer Scaling

- \rightarrow one π -group: z/z_i
- ightarrow every scaled mean variable:

$$\frac{\overline{a}}{a_{\star}} = f_a(\frac{z}{z_i})$$

- \rightarrow convective velocity scale: w_*
- \rightarrow works for wind & scalar variances, turbulent fluxes, skewness w, ..
- \rightarrow works for spectra (chapter 7)
- → 'not interesting' for profiles of mean variables (uniform)
- → does not work for mean concentrations (non-local influence)

Scaling regimes: The successful Three

 \checkmark

- \rightarrow Surface Layer (MOST)
- ightarrow Mixed Layer
- \rightarrow Local Scaling layer (incl. z-less scaling)

Scaling regimes: Unstable

Scaling regimes: Stable

Scaling regimes

- \rightarrow stable stratification (large z/L)
- ightarrow weak turbulence
- \rightarrow decoupled from surface
- ightarrow not the surface fluxes for scaling

a

 \rightarrow Greenland, non-dimensional wind shear

٢m

universität innsbruck

Local Scaling: z-less limit

h = SBL height

z-less limit: height z no longer important

- ightarrow stability so strong that surface influence vanishes
- \rightarrow Consequences:

Flux-variance relations = const

z-less limit: height z no longer important

- ightarrow stability so strong that surface influence vanishes
- \rightarrow Consequences:

Flux-gradient relations = linear

z-less limit: height z no longer important

 \rightarrow **z-less**: only if R_f < 0.25 and Ri < 0.25 \rightarrow 'well-behaved' (fully developed) turbulence

Grachev et al. (2013)

- \rightarrow for 'all conditions' (Ri, R_f): closer to Beljaars and Holtslag formulation
- \rightarrow deviation from 'z-less' behavior
Stable scaling regimes: shallow slope

2

8.0

0.6

0.4

- 0.2

0.0

0.10

0.08

0.06

0.04

0.02

0.00

100

80

60

40

20

٥

0.7

0.6

0.5

0.4

0.3

0.2

universität

- 50 m tower on a gentle slope (1°)
- Katabatic flows form
 - Top of PBL can be detected from tower measurements
- Ambiguity of PBL top estimate
- But we can test scaling regimes

Stable scaling regimes: shallow slope

Data from all scaling regimes:

- Surface layer (1st level) for high h
- Local scaling
- z-less scaling
- Intermittent
- Above SBL

Stable scaling regimes: shallow slope

• Stationary data from each regime

• Stationary & Ri < 0.21

Scaling regimes: Local Scaling

For Local scaling to be successful: Surface fluxes → we need local flux profiles (h = SBL height) [theoretical derivation (local scaling), Nieuwstadt (1984)]

Scaling regimes: Local Scaling

ightarrow profiles of variances

Scaling regimes: Local Scaling

ightarrow profiles of variances

Summary: Local Scaling

ightarrow one $~\pi$ -group: z / Λ

 \rightarrow every scaled mean variable:

$$\frac{\overline{a}}{a_{\star}} = f_a(\frac{z}{\Lambda})$$

- ightarrow works for wind & turbulent fluxes
- \rightarrow works for spectra (Chapter 7)
- ightarrow apparently difficult to assess (weak turbulence)
- ightarrow does not seem to work for temperature variance
- → subtle border between strongly stable (→ intermittency) and local / z-less scaling

Scaling regimes

- successful \leftrightarrow quasi-stationary
- Surface Layer, Mixed Layer, Local Scaling
- 'mean' = characteristic profiles
- dependent on a few characteristic variables

→ turbulent fluxes: $U' W'_{O} W' \theta'_{O}$ → length scales: z_i , L, Λ

Scaling in complex terrain

- → now that scaling regimes are established in homogeneous terrain...
- \rightarrow how about completely different conditions?
- not horizontally homogeneous
- not flat
- \rightarrow do we consider all relevant processes?

Scaling in complex terrain

Application Examples:

- 1. Mixed-layer TKE scaling (MAP Riviera)
- 2. Wind directional change with height
- 3. Local scaling flux-variance relationships (12 Datasets)

1. Mixed layer scaling in complex terrain

1. Mixed layer scaling in complex terrain

MAP Riviera Project

Rotach et al (2004)

MAP Riviera Project

MAP Riviera Project: summer/fall 1999

MAP: Measured Scaled TKE profiles

Weigel and Rotach (2004)

1/3

MAP: Measured surface fluxes

How can this scaling behavior be understood? \rightarrow Look into simulated TKE budget

TKE budget (solved in ARPS's 1.5 order TKE closure)

Evaluation of the TKE budget equation with ARPS

Late morning

Evaluation of the TKE budget equation with ARPS Early Afternoon

• Shear is dominant production mechanism

Turbulence is determined:

- by interaction of thermally driven valley flows
- not by buoyant processes from heated surface

• TKE determined by strength of valley winds.

universität

• But why does convective scaling approach still work ?

BLM | Innsbruck | Stiperski | 2020

Correlation between $\langle v \rangle$ and $w^2_* \langle v \rangle \sim w^2_*$

- Coincidence?
- Problem with scaling: <v> has wrong dimensions...

How general is this TKE scaling?

- \rightarrow east-west valley
- \rightarrow also 'optimal' w $_{*}$
- → similar (but not equal) behaviour

Baur, MSc thesis (2015)

Scaling in complex terrain

Application Examples:

- 1. Mixed-layer TKE scaling (MAP Riviera)
- 2. Wind directional change with height
- 3. Local scaling flux-variance relationships (12 Datasets)

$$\rightarrow$$
 friction velocity $u_* = \left[\left(\overline{u' w'_o} \right)^2 + \left(\overline{v' w'_o} \right)^2 \right]^{1/4}$

→ if coordinate system aligned with mean wind and no directional shear with height: $\overline{v'w'_{o}} = 0$

Valley wind – Slope wind

Momentum transport: Valley floor

Momentum transport: Slope station

this eddy: *v'w'* < 0

many eddies:

Momentum transport: Opposite slope

Babic N et al. (2017)

Momentum transport: Scaling velocity

flat terrain:

 \rightarrow in streamline coordinates

$$u_* = \left(-\overline{u'w'}\right)^{1/2}$$
 is enough, because $\overline{v'w'} = 0$

systematic turning with height (e.g., slope/valley wind) \rightarrow even if streamline coordinates

$$U_{\star} = \left(\overline{U'W'}^2 + \overline{V'W'}^2\right)^{1/4} \text{ necessary}$$

Momentum transport: Scaling velocity

Application Examples:

- 1. Mixed-layer TKE scaling (MAP Riviera)
- 2. Wind directional change with height
- 3. Local scaling flux-variance relationships (12 Datasets)

ightarrow look at influence of anisotropy

Standard deviation horizontal and vertical velocity

Unstable

Stable

Stiperski et al. (2019)

universität innsbruck

Standard deviation horizontal and vertical velocity

We can define deviations from scaling curve as measure of process we are missing

Stiperski et al. (2019)

Multilinear regression between deviation from scaling curve and

- Anisotropy
- Slope angle

universität

• Directional shear

shows these are missing processes

Stiperski et al. (2019)

Summary: Similarity Theory

- 'direct approach' to determine turbulence state
- few (characteristic) scaling variables needed
- 'recipe' available
- Scaling regimes
 - \rightarrow Surface Layer (MOST) (\rightarrow free convection limit)
 - \rightarrow Mixed Layer
 - \rightarrow Local Scaling Layer (z-less Scaling)
- horizontally homogeneous: established
- complex terrain / heterogeneous surface: only evolving

