

BOUNDARY LAYER METEOROLOGY

Prof. Ivana Stiperski, Dr. Manuela Lehner Department of Atmospheric and Cryospheric Sciences

Statistical Treatment of Turbulence

Statistical Treatment of Turbulence:

- \rightarrow Reynolds decomposition and averaging
- \rightarrow conservation equations:

2nd Order Moments

\rightarrow 2 approaches for treating these new variables

- I: Physical approach:
 - further development of conservation equations
 - \rightarrow simplify (assumptions), solve
 - ightarrow numerical solutions
 - ightarrow higher order
- II: Similarity theory

w'*θ*', *w*'*q*' and *u*'*w*', ...

 \rightarrow scale analysis

 \rightarrow *characteristics* of the result?

\rightarrow I + II combined (e.g. numerical models, often)

Chapter 4 Similarity Theory

Scaling

Background procedure: *scaling*

Often: different realizations of a process are very different Often: single realization not very conclusive

→ 'In Bangladesh the prize of 1 kg rice corresponds to 3 Cts...'

BUT: they are rather similar in terms of dominant, possibly external variables.

Scaling

Often: single realization not very conclusive

→ 'In Bangladesh the prize of 1 kg rice corresponds to 3 Cts...'

better: $\frac{\text{price (kg rice)}}{\text{weekly income}} \approx 0.05$

 \rightarrow scaling helps comparing similar cases

Scaling example: flow separation

When will we have flow separation from our mountain?

Scaling example: separate or not?

Scaling example: flow separation

When will we have flow separation from our mountain?

Scaling Example: boundary layers

ightarrow formal empirical scaling approach for turbulence

Basis of similarity theory: Field experiments

Structure of turbulence over flat terrain \rightarrow shows common, consistent repeatable behavior \rightarrow is determined by a few key processes (variables)

Basic hypothesis:

If all the relevant processes are taken into account, any nondimensional variable can be described as a *universal function* of the maximum number of *independent* non-dimensional combinations of process variables.

Preconditions:

- ightarrow equilibrium conditions
 - (quasi-stationarity, horizontally homogeneous, flat)
- ightarrow this is the general case...
- ightarrow but is not a necessity (could be relaxed)

Approach (recipe):

- 1. Determine the relevant processes (i.e. the corresponding variables): *one observed variable per process*
- 2. Determine the maximum number of independent, dimensionless ' π -groups' \rightarrow Buckingham's ' π -Theorem': N π -groups
- 3. Any mean dimensionless variable in the system, \overline{a} ,

may then be expressed as

 $\frac{\overline{a}}{a_*} = f_a(\pi_{1,}\pi_{2,}...\pi_N)$

4. Perform an experiment to determine the shape of f_a

Approach (recipe):

 \rightarrow similarity theory does not say anything about the shape of f_a !

 \rightarrow other knowledge (theory) may possibly be used to specify certain conditions for f_a (e.g., limiting values)

Approach (recipe):

- 1. Identify relevant processes:
- ightarrow our knowledge (meteorological) of boundary layer
- ightarrow under standing physical processes
- \rightarrow trial and error?
- \rightarrow which variable is relevant for a process?

Note: only the experiment will tell us, whether we have identified 'all the right' processes under 1) (not too many, none forgotten)

Approach (recipe):

- 1. Determine the relevant processes (i.e. the corresponding variables): *one variable per process*
- 2. Determine the maximum number of independent, dimensionless 'π -groups'
 → Buckingham's 'π-Theorem': N π-groups
- 3. Any mean dimensionless variable in the system, \overline{a} , may then be expressed as

$$\frac{\overline{a}}{a_*} = f_a(\pi_{1}, \pi_{2}, ..., \pi_N)$$

4. Perform an experiment to determine the shape of f_a

given: n variables, with r fundamental dimensions \rightarrow [m, kg, s, K, A] °

choose: r key variables

- whereby: all fundamental dimensions must be represented in the r variables
 - no dimensionless combination of the key variables must be possible
- → determine the 'dimension equations' for the remaining (not 'key') variables:

N = n - r equations

→ determine the 'dimension equations' for the remaining (not 'key') variables :

N = n - r equations \rightarrow let: V_1 , V_2 , V_3 , V_4 variables \rightarrow be: $V_1 = pressure$, $V_2 = length$, (example) $V_3 = frequency, V_4 = density$ \rightarrow choose: V_1 , V_2 , V_3 key variables \rightarrow all physical dimensions in V₁, V₂, V₃? $V_1 \qquad V_2$ V_{3} $[kg m^{-1} s^{-2}]$ [m] $[s^{-1}]$

 $→ choose: V_1, V_2, V_3 key variables$ $→ all physical dimensions in V_1, V_2, V_3?$ $V_1 V_2 V_3$ [kg m⁻¹ s⁻²] [m] [s⁻¹]

→ no dimensionless combination possible from V_1 , V_2 , V_3 ? → 'kg' only in one.....

 \rightarrow dimension equation:

$$V_4 = (V_1)^a \cdot (V_2)^b \cdot (V_3)^c$$

[kg m⁻³] = [kg m⁻¹ s⁻²]^a · [m]^b · [s⁻¹]^c

$$\Rightarrow \text{ example:} \qquad \rho = (\Delta p)^a \cdot (L_*)^b \cdot (f)^c \\ [kg m^{-3}] = [kg m^{-1} s^{-2}]^a \cdot [m]^b \cdot [s^{-1}]^c \\ eq. \text{ for } kg: \quad 1 = a \\ \text{ for } m: \quad -3 = -a + b \\ \text{ for } s: \quad 0 = -2a \quad -c \end{array} \qquad \begin{array}{c} a=1 \\ b=-2 \\ c=-2 \end{array}$$

- → determine the exponents
 (i.e.: solve the dimension equations)
- \rightarrow example: a=1, b=-2, c=-2

$$V_4 = \frac{V_1}{V_2^2 V_3^2}$$

\rightarrow for each equation: divide the left hand side by the right hand side

$$N = n - r \qquad \pi \text{-groups}$$

$$\Rightarrow \text{ example:} \qquad V_4 \cdot \frac{V_2^2 V_3^2}{V_1} = \pi_1 \qquad \Rightarrow \text{ dimensionless}$$

$$\Rightarrow \quad \frac{\overline{a}}{a_*} = f_a(\pi_1, \pi_2, \dots, \pi_N) = f_a(\pi_1) \qquad \Rightarrow \quad \text{for any mean variable } \overline{a} \text{ in the system}$$

$$\frac{\overline{a}}{a_{\star}} = f_a(\pi_1, \pi_2, \dots, \pi_N)$$

 \rightarrow how do I get a_{*}?

 \rightarrow for any mean variable a in the system

 \rightarrow use key variables:

 $\rightarrow \text{ dimension equation:}$ $a_* = (V_1)^e \cdot (V_2)^f \cdot (V_3)^g$

 $a_* = V_2 \cdot V_3$

example: \rightarrow if $a_* =$ scaling **velocity**:

 $[m s^{-1}] = [kg m^{-1} s^{-2}]^{e} \cdot [m]^{f} \cdot [s^{-1}]^{g}$

 \rightarrow e=0

 \rightarrow f=g=1

universität

Natherüberüchi mit Karlan + Datien ab Tallefas Polling / Bullefin mitteornlogique (carlan al données) par telefas polling (fr. 1.507Mm.) 0000 152244 Abonnement: MalexSchwalz, F. Schadwer, Poetfach 514, 6044 2344, Hotilwe 044 255 56 59 59

First order approximation

$$u_{G} = -\frac{1}{\rho f_{c}} \frac{\partial p}{\partial y},$$
$$v_{G} = \frac{1}{\rho f_{c}} \frac{\partial p}{\partial x}$$

useful: @ synoptic scale

1) Relevant variables:

 \rightarrow relevant processes: pressure gradient force ($\Delta\,\rm p/L_*,\rho\,$) \rightarrow Coriolis acceleration (f)

$$\Delta p \ [kg m^{-1} s^{-2}]$$

f $[s^{-1}]$
 $L_* \ [m]$
 $\rho \ [kg m^{-3}]$

n=4 variables r= 3 dimensions

 \rightarrow 1 dimensionless group

2) Dimensionless groups: N=1

choose: key variables $\Delta p, L_*, f$ → no dimensionless group possible (kg in only one variable...)

$$\rightarrow \text{dimension equation:} \qquad \rho = (\Delta p)^a \cdot (L_*)^b \cdot (f)^c \\ [\text{kg m}^{-3}] = [\text{kg m}^{-1} \text{ s}^{-2}]^a \cdot [\text{m}]^b \cdot [\text{s}^{-1}]^c$$

a=1 \rightarrow b=-2 c=-2

$$\rho = (\Delta \rho)^a \cdot (L_*)^b \cdot (f)^c$$

$$\begin{array}{ccc} a=1 \\ b=-2 \\ c=-2 \end{array} \qquad \rho = \frac{\Delta p}{L_*^2 f^2}$$

$$\pi_1 = \frac{\rho L_*^2 f^2}{\Delta p}$$

...divide the left hand side by the right hand side

3. Any dimensionless variable in the system, a, may then be expressed as

$$\frac{\overline{a}}{a_*} = f_a(\pi_1) \qquad (N=1)$$

- $\rightarrow \overline{u_{G}}$: geostrophic wind (wanted)
- $\rightarrow u_{G^*} = L_* f$ scaling velocity (produced from the *key variables*)

4. Experiment

Example: Period of Pendulum

- \rightarrow **n** = 4 dimensional variables:
 - T (oscillation period), M (mass), L (the length of the string), g (earth gravity)
- → r = 3 fundamental physical units in this equation time, mass, and length
- \rightarrow we need N = n r = 4 3 = 1 dimensionless quantity

→ dimensionless quantity is:
$$\Pi = \frac{gT^2}{L}$$

and therefore: $T = const \sqrt{\frac{L}{g}}$

Example: Similarity Theory

Monin-Obukhov Similarity Theory \rightarrow for *surface layer*

Monin-Obukhov Similarity Theory

Relevant processes &	variables	
\rightarrow friction	u'w'o	[m ² s ⁻²]
ightarrow heat exchange	$\overline{w'}\theta'_{o}$	[mKs ⁻¹]
\rightarrow buoyancy	$g/\overline{ heta}$	[ms ⁻² K ⁻¹]
→ length scale (max size of eddies)	Ζ	[m]
n=4 r=3 (N=1)	e dimensionless gro	oup

Monin-Obukhov Similarity Theory

choice 'key variables':

 $\overline{u' w'_o} \quad w' \theta'_o \quad g / \overline{\theta}$ [m²s⁻²] [mKs⁻¹] [ms⁻²K⁻¹]

ightarrow no dimensionless group possible?

$$\rightarrow$$
 would: $[0,0,0] = (\overline{u'w'_o})^d \cdot (\overline{w'\theta'_o})^e \cdot (\frac{g}{\overline{\theta}})^f$

eq. for m:
$$0 = 2d + e + f$$
i)for s: $0 = -2d - e - 2f$ ii)for K: $0 = e - f$ iii)

Monin-Obukhov Similarity Theory

eq. for m:0 = 2d + e + fi)for s:0 = -2d - e - 2fii)for K:0 = e - fiii)

iii: e=f

i: $2d + 2e = 0 \longrightarrow d = -e (=-f)$

 \rightarrow ii: -2d + d + 2d =0 \longrightarrow d=0 (=e=f)

one dimensionless group to determine:

$$Z = (\overline{u' w'_o})^a \cdot (\overline{w' \theta'_o})^b \cdot (\frac{g}{\overline{\theta}})^c \quad (\dots \text{ solve for a, b, c})$$

$$\longrightarrow \quad Z = \frac{(\overline{u' w'_o})^{3/2}}{\frac{g}{\overline{\theta}} \overline{w' \theta'_o}}$$

$$\text{viz.} \quad \pi_1 = \frac{z \frac{g}{\overline{\theta}} \overline{w' \theta'_o}}{(\overline{u' w'_o})^{3/2}}$$

for surface layer:

$$\frac{\overline{a}}{a_*} = f_a(\pi_1)$$

Any mean variable

→ if non-dimensionalised with a_* → is a function of π_1 only

Example:

- $\rightarrow \overline{a} = \sigma_w$ (for air pollution modeling...)
- \rightarrow a_{*}? \rightarrow a velocity.....
- ightarrow friction velocity (we will see)

$$\frac{\sigma_{w}}{U_{\star}} = f_{w}(\pi_{1})$$

For surface layer:

$$\frac{\overline{a}}{a_{\star}} = f_a(\pi_1)$$

Monin und Obukhov (1954):

similar approach, but not formally the same
→ what determines turbulence near the surface?
→ friction and heat exchange

 $\begin{array}{ll} \mbox{friction} & \rightarrow \mbox{momentum flux} \\ \mbox{heat exchange} \rightarrow \mbox{sensible heat flux} \end{array}$

 $\frac{\overline{a}}{a_{\star}} = f_a(\pi_1)$

Monin und Obukhov (1954):

For surface layer:

surface layer: turbulent flux at the surface ($u'w'_o, w'\theta'_o$) is characteristic for the SL

surface layer = 'constant flux layer' → turbulent fluxes do not significantly change over lowest 10% of boundary layer → surface fluxes influence (determine) turbulence in the entire SL

For surface layer:

$$\frac{\overline{a}}{a_{\star}} = f_a(\pi_1)$$

Monin und Obukhov (1954):

Def:
$$U_* \equiv (-\overline{u'W'_o})^{1/2}$$

 $\theta_* \equiv -\overline{W'\theta'_o} / U_*$
 $L \equiv \frac{1}{k} \frac{u_*^2}{\theta_*} (\frac{g}{\overline{\theta}})^{-1} = -\frac{1}{k} \frac{u_*^3}{\overline{w'\theta'_o}} (\frac{g}{\overline{\theta}})^{-1}$

characteristic velocity

characteristic temperature

characteristic length

$$\frac{\overline{a}}{a_{\star}} = f_a(\pi_1$$

Monin und Obukhov (1954):

Def:
$$U_* =: (-\overline{U'W'_o})^{1/2}$$

For surface layer:

characteristic velocity

note: friction velocity was defined earlier:

$$U_* \equiv \left(\overline{U'W'}_o^2 + \overline{V'W'}_o^2\right)^{1/4} \tag{*}$$

→ in streamline–coordinates: V'W' = 0→ (*) is proper definition (should also generally be in L)

For surface layer:

$$\frac{\overline{a}}{a_{\star}} = f_a(\pi_1)$$

Monin und Obukhov (1954):

$$L = \frac{1}{k} \frac{u_{\star}^{2}}{\theta_{\star}} \left(\frac{g}{\overline{\theta}}\right)^{-1} = \underbrace{\frac{1}{k} \frac{u_{\star}^{3}}{\overline{w'\theta'_{o}}}}_{W'\overline{\theta'}} \left(\frac{g}{\overline{\theta}}\right)^{-1}$$

compare
our analysis
$$\pi_{1} = \frac{z \frac{g}{\overline{\theta}} \overline{w' \theta'}_{o}}{(u' w'_{o})^{3/2}} \approx L$$

→ difference: von Kàrmàn constant **k**

а

<u>a</u>*

Early approach (before MOST):

 $\frac{\partial \overline{u}}{\partial z} \frac{z}{u_*} = const.$ $\Rightarrow experiments: 'const' = 1/0.4 = 2.5$

Early approach (before MOST):

 $\frac{\partial \overline{u}}{\partial z} \frac{z}{u_*} = \text{const.}$ $\Rightarrow \text{ experiments: const = 1/0.4} \qquad \qquad \frac{\partial \overline{u}}{\partial z} \frac{z}{u_*} = 1$ $\frac{\partial \overline{u}}{\partial \overline{u}} \frac{kz}{u_*} = 1$

However: → only constant for near-neutral flows → stable flows: 1/k larger → unstable flows: 1/k smaller

k

 $\partial Z U_*$

early approach (before MOST):

 $\frac{\partial \overline{u}}{\partial z} \frac{z}{u_{\star}} = const.$ $\Rightarrow experiments: const = 1/0.4 \qquad \qquad \frac{\partial \overline{u}}{\partial z} \frac{z}{u_{\star}} 0.4 = 1$

However: \rightarrow only constant for near-neutral flows

 \rightarrow stable flows: 1/k larger

 \rightarrow unstable flows: 1/k smaller

Any new theory (MOST):

- \rightarrow retain success of 'old theory' (neutral conditions)
- ightarrow better & more general where old theory fails

 \rightarrow keep k in MOST

→ for Surface Layer → dependence on z/L → Obukhov Length L:

$$\frac{\overline{a}}{a_*} = f_a(\pi_1)$$

measure for stability of stratification

$\overline{w'\theta'}_o = 0$	\Rightarrow	$\Gamma = \infty$	z/L=0: neutral
$\overline{w'\theta'_o} > 0$	\Rightarrow	L < 0	z/L<0: unstable
$\overline{w'\theta'}_o < 0$	\Rightarrow	L > 0	z/L>0: stable

Obukhov Length L

$$\frac{\overline{a}}{a_{\star}} = f_a(\pi_1)$$

\rightarrow make an experiment to determine $f_{\rm a}$

example wind speed:

$$\frac{\partial \overline{u}}{\partial z} \frac{kz}{u_*} = \phi_m(z / L)$$

Designing your experiment

Kansas Experiment 1969

 θ_*

$$\frac{\overline{a}}{a_*} = f_a(\frac{z}{L})$$

T-variance:

wind:

$$\frac{\partial \overline{u}}{\partial z} \frac{kz}{u_{\star}} = \phi_m(z/L)$$
$$\frac{\sigma_{\theta}}{\theta_{\star}} = \phi_{\theta}(\frac{z}{L})$$

 $\theta_{\star} = -W'\theta'_{o}/U_{\star}$

characteristic temperature

Non-dimensional temperature variance

$$\frac{\overline{a}}{a_{\star}} = f_a(\frac{z}{L})$$

- Kansas
- unstable
- ,free convection limit': -1/3 power

$$\frac{G_{W}}{U_{\star}} = 1.3(1-3\frac{Z}{L})^{1/3}$$

$$\frac{\overline{a}}{a_{\star}} = f_a(\frac{z}{L})$$

wind:

 $\frac{\partial \overline{u}}{\partial z} \frac{kz}{u_*} = \phi_m(z / L)$

T-variance:

$$\frac{\sigma_{\theta}}{\theta_{\star}} = \phi_{\theta}\left(\frac{z}{L}\right)$$

velocity variance:

Tracer concentration:

$$\frac{\sigma_{w}}{u_{\star}} = \phi_{w}(\frac{z}{L})$$
$$\frac{\chi_{\star}}{x} = f_{\chi}(\left|\frac{x}{L}\right|)$$

universität innsbruck

- Prairie Grass, tracer experiments
- $z_* = Q/(u_* \int \chi dy)$ caled concentration
- transformation of z/L dependence into x/L through u

universität innsbruck

$$\frac{\overline{a}}{a_{\star}} = f_a(\pi_1)$$

Note: only the experiment will tell us, whether we have identified 'all the right' processes under 1) (not too many, none forgotten)

- \rightarrow example: vertical velocity variance
- \rightarrow in ,Kansas': yes
- \rightarrow in hilly terrain; no....

$$\frac{\sigma_w}{u_*} = \phi_w(\frac{z}{L})$$

Standard deviation vertical velocity

universität innsbruck

Standard deviation horizontal velocity

Unstable

Stable

universität innsbruck

Standard deviation horizontal velocity

Wind profile

Use MOST (for the Surface Layer)

get wind profile in the SL: \rightarrow based on MOST prediction for non-dim gradient

wind profile:

$$\frac{\partial \overline{u}}{\partial z} \frac{kz}{u_{\star}} = \phi_m(z / L)$$

wind:

$$\frac{\partial u}{\partial z}\frac{kz}{u_{\star}}=\phi_m(z/L)$$

let:

 $\phi_m(z/L=0) = 1 \qquad \text{(choice of k!} \rightarrow k=0.4)$ \rightarrow neutral!

Def: $\overline{u}(z = z_0) \equiv 0$ z_0 : roughness length

 $\overline{u}(z) = \frac{u_*}{k} \ln(\frac{z}{z_*}) \rightarrow \log \text{ profile, neutral}$

$$\overline{u}(z) = \frac{u_*}{k} \ln(\frac{z}{z_o})$$

 \rightarrow log profile, neutral

ightarrow ideally neutral

Wind profile Surface Layer

→ z_o dependent on size of roughness elements, $z_o \approx 0.1h$ → log-profile is a property of Surface Layer

Wind:

$$\frac{\partial \overline{u}}{\partial z} \frac{kz}{u_*} = \phi_m(z/L)$$

$$\frac{k}{u_*} \int_0^{\overline{u}} d\overline{u}' = \int_{z_o}^z \frac{\phi_m(z'/L)}{z'} dz'$$

$$= \int_{z_o}^z \frac{dz'}{z'} - \int_{z_o}^z \frac{1 - \phi_M(z'/L)}{z'} dz'$$

$$= \ln\left(\frac{z}{z_o}\right) - \int_{z_o}^z \frac{1 - \phi_M(z'/L)}{z'} dz'$$

non-neutral:

$$\frac{k}{u_*} \int_{0}^{\overline{u}} d\overline{u}' = \ln\left(\frac{z}{z_o}\right) - \int_{z_o}^{z} \frac{1 - \phi_M(z'/L)}{z'} dz'$$
$$= \Psi_m(z/L)$$

$$\rightarrow \overline{u}(z) = \frac{u_*}{k} \left[\ln\left(\frac{z}{z_o}\right) - \Psi_m(z/L) \right]$$

'correction' for stability

universität innsbruck

wind:

Potential temperature:

non-neutral:

$$\frac{k}{\theta_*} \int_{\overline{\theta}(z_{OH})}^{\overline{\theta}(z)} d\overline{\theta}' = \ln\left(\frac{z}{z_{OH}}\right) - \int_{z_{OH}}^{z} \frac{1 - \phi_H(z'/L)}{z'} dz'$$
$$= \Psi_H(z/L)$$
$$\xrightarrow{\overline{\theta}(z)} - \overline{\theta}(z_{OH}) = \frac{\theta_*}{k} \left[\ln\left(\frac{z}{z_{OH}}\right) - \Psi_H(z/L) \right]$$

- \rightarrow z_{oH}: ,reference height', ,roughness length for temperature' \rightarrow not the same as z_o
- ightarrow some ,10 times smaller than z_o'

$$\longrightarrow \overline{\theta}(z) - \overline{\theta}(z_{oH}) = \frac{\theta_*}{k} \left[\ln\left(\frac{z}{z_{oH}}\right) - \Psi_H(z/L) \right]$$

general form:

$$\frac{z}{L} < 0 \qquad \phi_H(z/L) = (1 - 15\frac{z}{L})^{-1/2} \qquad \Psi_H(z/L) = 2\ln[\frac{1 + x^2}{2}]$$
$$x = (1 - 15\frac{z}{L})^{1/4}$$

$$\frac{z}{L} > 0 \qquad \phi_H(z/L) = (1+6\frac{z}{L}) \qquad \Psi_H(z/L) = -6z/L$$

2

MOST: Free convection limit

Free convection limit:

 \rightarrow at large -z/L, friction becomes unimportant

 \rightarrow limiting behaviour: independent of u_*

ightarrow can use this to deduce 'limit of MOST similarity functions'

example
$$\sigma_w / u_* = \phi_w (z/L)$$

re-write: $\sigma_w = u_* \phi_w (z/L)$ (Def of L: $L = -\frac{1}{k} \frac{u_*^3}{w' \theta'_o} (\frac{g}{\overline{\theta}})^{-1}$)
 $\Rightarrow \lim_{z/L \to \infty} \phi_w (z/L) \sim (-z/L)^{1/3}$

$$\stackrel{\stackrel{\stackrel{\stackrel{\stackrel{\stackrel{\stackrel{\stackrel{\stackrel}}{=}}}{\longrightarrow}} {}_{0,4}} {\stackrel{\stackrel{\stackrel{\stackrel}{=}}{\longrightarrow}} {}_{0,4}} \stackrel{\stackrel{\stackrel{\stackrel{\stackrel}{=}}{\longrightarrow}} {}_{0,4} \stackrel{\stackrel{\stackrel{\stackrel}{=}}{\longrightarrow}} \stackrel{\stackrel{\stackrel}{=}}{}_{-z/L}$$

ightarrow determine wind velocity at different height than available

For example:

- \rightarrow wind speed @ source height for dispersion modeling
- \rightarrow numerical model (validation & assimilation)

$$\overline{u}(z) = \frac{u_*}{k} \left[\ln(\frac{z}{z_o}) - \Psi_m(z/L) \right]$$

Wind profile Surface Layer

for example:

- \rightarrow want to use observation
 - for dispersion modeling
- \rightarrow stack height: 50 m

$$\overline{u}(z) = \frac{u_*}{k} \left[\ln(\frac{z}{z_o}) - \Psi_m(z/L) \right]$$

Wind profile Surface Layer

- → determine wind velocity at different height than available
- → determine turbulent (surface) fluxes from observation / or model value of mean wind speed

example: numerical model

- → available: mean wind speed at model level 1 (determined from solving cons. eq.)
- \rightarrow coupling to surface: need the surface fluxes:

 $u'w'_{o}, w'\theta'_{o}$

(surface exchange parameterization)

- → determine wind velocity at different height than available
- → determine turbulent (surface) fluxes from obs of mean wind speed (\rightarrow L, stability)
- \rightarrow pollutant dispersion models
- \rightarrow models for CO₂ exchange

Summary: SL Scaling

- \rightarrow based on *surface fluxes:* $w'\theta'_o u'w'_o$
- → *Surface Layer* = 'constant flux' layer
- ightarrow one $~\pi$ -group: z/L
- \rightarrow every scaled mean variable:

$$\frac{\overline{a}}{a_*} = f_a(\pi_1)$$

- → works for wind profile, temperature profile, specific humidity profile, vertical velocity variance, scalar variances, ...
- \rightarrow works for spectra (chapter 7)
- ightarrow works for mean concentrations
- → does not work (very well): horizontal velocity variances

