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Chapter	3

Statistical	treatment	of	turbulence
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Pdf’s
→ probability	density	function	to	describe	turbulent	variables
→ fully	characterized	through	its	moments	(variance,	skewness..)
Stationarity
→ all	moments	do	not	change	with	time
→ in	practice:	up	to	second	moments	enough
Homogeneity
→ is	stationarity	in	space	(horizontal!)
Averaging
→ average	over	all	possible	realizations→ ensemble	average
Reynold’s	averaging
→ separate	the	turbulence	and	the	non-turbulent	motions
→	u = 𝑢$ + 𝑢′
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Revision
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Ergodic	Hypothesis
→”	time	ave. of	stationary rand.	var.	and	space	ave. of	homogeneous
rand.	var.	converge	to	ensemble	ave. over	all	realizations”
→	time/space	average	→	ens. av.
Taylor	Hypothesis
→	“Turbulence	is	frozen	during	the	time	it	travels	across	instrument”
Time	average
→	Point	measurements	(turbulence	towers)	– average	over	which	
time?
Space	average
→	Distributed	measurements	
→	Lagrangean platforms
→	Volume	averaged	measurements
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Revision
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Covariances and	Transport

→	Non-linear	turbulence	product	of	two	variables
→	Non-zero	if	two	signals	are	correlated	(arise	from	same	process)
→	Represent	turbulent	fluxes	(transport)
→	Quadrant	analysis:	process
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Revision

Stull	(1988)



• kinematic	fluxes:

• In	energy	units:

  ρcpw ’θ ’ =:H sensible	heat [H]	=	Wm-2

    

€ 

ρLvw' q ' =:LvE latent	heat [LvE]	=	Wm-2

    

€ 

ρu' w' =: M momentum [M]	=	Nm-2

→	without	average	vertical	velocity!

turbulent	transport	of
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Turbulent	fluxes

𝑤′𝜃′, 𝑤*𝑞*, 𝑢*𝑤*, 𝑣*𝑤* , 𝑤*𝑐*
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• flow	description
→	conservation	eq.

= u1
∂θ
∂x1

+u2
∂θ
∂x2

+u3
∂θ
∂x3

    

€ 

∂θ
∂t

+ uj
∂θ
∂xj

= νθ
∂2θ

∂xj
2
−

1
ρcp

∂NRj

∂xj
−

LvE
ρcp

+
Rc
ρcp

• consider	advection	term

for	a	turbulent	flow:
→	Reynolds	decomposition	(no	change,	but	fluctuations				

considered)	of	all	variables
→ Reynolds	average	(whole	equation)
→	Result:	conservation	equation	for	mean	flow,	but	
turbulence	considered

→	in	the	terms,	where	we	have	products	of	two	variables
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Turbulent	fluxes
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• flow	description
→	conservation	eq.

• consider	advection	term
= u1

∂θ
∂x1

+u2
∂θ
∂x2

+u3
∂θ
∂x3

Reynolds	decomposition:

    

€ 

∂θ
∂t

+ uj
∂θ
∂xj

= νθ
∂2θ

∂xj
2
−

1
ρcp

∂NRj

∂xj
−

LvE
ρcp

+
Rc
ρcp

= (u1 + !u1)
∂(θ + !θ )
∂x1

+ (u2 + !u2)
∂(θ + !θ )
∂x2

+ (u3 + !u3)
∂(θ + !θ )
∂x3

= u1
∂θ
∂x1

+u1
∂ "θ
∂x1

+ "u1
∂θ
∂x1

+ "u1
∂ "θ
∂x1

+u2
∂θ
∂x2

+u2
∂ "θ
∂x2

+ "u2
∂θ
∂x2

+ "u2
∂ "θ
∂x2

+u3
∂θ
∂x3

+u3
∂ "θ
∂x3

+ "u3
∂θ
∂x3

+ "u3
∂ "θ
∂x3
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Turbulent	fluxes
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Reynolds	averaging:

(u1 + !u1)
∂(θ + !θ )
∂x1

+ (u2 + !u2)
∂(θ + !θ )
∂x2

+ (u3 + !u3)
∂(θ + !θ )
∂x3

= u1
∂θ
∂x1

+u1
∂ "θ
∂x1

+ "u1
∂θ
∂x1

+ "u1
∂ "θ
∂x1

+u2
∂θ
∂x2

+u2
∂ "θ
∂x2

+ "u2
∂θ
∂x2

+ "u2
∂ "θ
∂x2

+u3
∂θ
∂x3

+u3
∂ "θ
∂x3

+ "u3
∂θ
∂x3

+ "u3
∂ "θ
∂x3

0

a’b = 0

= u1
∂θ
∂x1

+ "u1
∂ "θ
∂x1

+u2
∂θ
∂x2

+ "u2
∂ "θ
∂x2

+u3
∂θ
∂x3

+ "u3
∂ "θ
∂x3
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Turbulent	fluxes
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if:
→	horizontally	homogeneous
→	mean	vertical	wind	=0:

∂ / ∂x1 = ∂ / ∂x2 = 0

= u1
∂θ
∂x1

+ "u1
∂ "θ
∂x1

+u2
∂θ
∂x2

+ "u2
∂ "θ
∂x2

+u3
∂θ
∂x3

+ "u3
∂ "θ
∂x3

u3 = 0

mean	advection	term:

→	vertical	advection	term	≠	zero	(even	if	horiz.	homogeneous)
→	will	see:

  
′u3

∂ ′θ
∂x3

= ∂
∂x3

( ′u3 ′θ )
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Turbulent	fluxes
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before	Reynolds	treatment:

after:

→	here:	horiz.	homogeneous	&	no	mean	vertical	velocity
→	additional	term:	flux	divergence

  

∂θ
∂ t

+uj

∂θ
∂ xj

= νθ

∂ 2θ
∂ xj

2 −
1

ρcp

∂NRj

∂ xj

−
LvE
ρcp

+
Rc

ρcp

  

∂θ
∂ t

+uj

∂θ
∂ xj

+ ∂
∂x3

( ′u3 ′θ ) = νθ

∂ 2θ
∂ xj

2 − 1
ρcp

∂NR j

∂ xj

−
LvE
ρcp

+
Rc

ρcp
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Turbulent	fluxes



• Co-variance	between	2	velocity	vectors

Special	case:	
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Momentum	transport
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( ) ( )
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b   b   b   =       
b   b   b            
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332313

322212
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aaa
aaa
aaa
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for	velocity	vector:

u ⋅

u =  u,v,w( ) ⋅ u,v,w( )

(u,	v,	w)	instead	of		(u1,	u2,	u3)

            uu   uv    uw
       =   vu   vv    vw
            wu   wv   ww  
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Tensor	notation
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• co-variance	between	2	velocity	vectors

 cov(ui ,uj ) = !ui !uj =
!u !u !u !v !u !w
!v !u !v !v !v !w
!w !u !w !v !w !w

"

#

$
$
$
$

%

&

'
'
'
'

→	diagonal:	variances
→	outside	diagonal:	

    

€ 

u' w' vertical	transport	of	horizontal	momentum

    

€ 

w'u' horizontal	transport	of	vertical	momentum

?
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Momentum	transport
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difference?

effect:
consider	deformation	of		fluid	elements

    

€ 

u' w'     

€ 

w'u'
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Momentum	transport
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→ w’  transported to the cube   

→ u’ transported to the cube 
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→	u’w’	and	w’u’	indistinguishable
→	cov (u,w) is	symmetric

process:		friction
effect:						deformation	of	fluid	elements

→ force	on	one	side	of	cube
→	units:	pressure	/	shear	stress

    

€ 

[ρu'i u' j] = Nm−2

→	Reynolds	stress tensor
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Momentum	transport
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Def:     

€ 

−ρu'i u' j =:  τ ij

z

u
    

€ 

u' w' < 0

→	in	particular:	vertical	transport
→	u’w’,	v’w’
→	if coord.	system	

parallel	to	mean	wind:
→	v’w’=0

process:		friction
effect:						deformation	of	fluid	elements
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Reynolds	stress	tensor
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Typical	profiles	of	fluxes	

Stull	(1988)

SBL

CBL

Stull	(1988)
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Typical	profiles	of	heat	fluxes	

Stull	(1988)

Why	do	we	observe	such	a	profile	of	heat	flux?
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• near	the	ground:
→	friction	(→	turbulence,	mechanical)
→	shear	stress,	especially	vertical
→	
→	indicates:	>	how	strong	is	deformation?

>	how	much	momentum	transport	for	
compensation?

• Def.:		

    

€ 

u'w',  v ' w'

[ ] 4/12
o

2
o* )w’’()w’’(: vuu +=

characteristic	velocity:	friction	velocity
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Friction	velocity



• defined	based	on	surface	fluxes:

BLM	|	Innsbruck	I	Stiperski	I	2020

    

€ 

u* =: (u' w'o )2 + (v ' w'o )2[ ]
1/ 4

• fluxes	approximately	constant	close	to	surface
• u* characteristic	velocity	for	Surface	Layer

Friction	velocity
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• Lowest	10%	of	PBL
• Fluxes	change	by	10%

example:	wind	tunnel
→	surface	A:	hom roughness
→	lowest	ca	10%:
‚constant	stress‘

Raupach	et	al	1980
’’wu

he
ig
ht

A

Surface	layer
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u

z

u* large
[O(0.5	ms-1)]

strong	wind
strong	friction
(large	gradients)

u

u* small
[O(0.1	ms-1)]

weak	wind
weak	friction
(small	gradients)

z
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Friction	velocity
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• Reynolds	decomposition	and	averaging:
→ co-variances	=	fluxes	(turbulent	transport)

• Intensity	of	turbulence
→	variances
→ standard	deviations

• turbulence	intensity
  

€ 

Ik =
σuk

u 
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Turbulence	variables
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→ how	much	kinetic	energy	in	turbulence	scales?
→ see	spectra

consider:
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Turbulence	Kinetic	Energy TKE

→	TKE: 𝑇𝐾𝐸 =	
1
2
𝜌	𝑢56*7

→	kinetic	energy: 𝐸859 = 	
1
2
𝜌 𝑢7 + 𝑣7 + 𝑤7



sp
ec
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al
	e
ne

rg
y

period	(s)

daily	cycle

turbulence

spectral	gap

Van	Gorsel (2004)
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area	under	
curve:	TKE
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Energy	Spectra
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consider:
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Turbulence	Potential	Energy TPE

→	TPE: 𝑇𝑃𝐸 = 	
𝑔
𝜃𝑁7

1
2
𝜃*7

→	potential	energy
of	mean	flow:

𝐸=>? = 	∫ 𝜌𝑔𝑧	𝑑𝑧C
D = R∫ 𝜌𝑇	𝑑𝑧C

D

→mean	potential	temperature	is	proportional	to	T
→ turbulent	potential	temperature	is	proportional	to	q’2
→	Zilitinkevich et	al.	2007
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→	go	back	to	Reynolds	stress	tensor
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Anisotropy	of	Reynolds	stress	tensor

𝜏 =
𝑢𝑢	𝑢𝑣	𝑢𝑤
𝑢𝑣	𝑣𝑣	𝑣𝑤
𝑢𝑤	𝑣𝑤	𝑤𝑤

→	symmetric	tensor	with	6 independent	variables:	fluxes	and	
variances

→	Anisotropy:	directional	dependency
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→	Isotropic:	(i.e.	invariant	to	rotation)
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Anisotropy	of	Reynolds	stress	tensor

𝜏 =
𝑢𝑢			0				0
0				𝑣𝑣			0
	0				0		𝑤𝑤

→	no	off-diagonal	terms	(fluxes)
→	variances	are	the	same	𝑢𝑢 = 𝑣𝑣 = 𝑤𝑤 =	 7

G
𝑇𝐾𝐸

→	Look	only	at	the	anisotropy	stress	(components)

bij =
u i'u j'

u l'u l'
−
1
3
δij
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→	Tensor	analysis:	eigenvalues	and	eigenvectors	(3)

→	Anisotropy can	be	described	by	a	set	of	2 invariants	that	are	
functions	of	eigenvalues	of	the	anisotropy	tensor	(Lumley	&	
Newmann 1977)

→	Invariants:
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Anisotropy	of	Reynolds	stress	tensor
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Anisotropy	invariant	maps

Hamilton	and	Cal	(2015)

→	Lumley	triangle

→	All	realizable states	of	
turbulence	are	within	the	map

→	3	limiting	states:
Isotropic
Two-component
One-component



Two-component

Isotropic

One-componentDi
st
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ce
	to

	
iso

tr
op

y

yB

Banerjee	et	al.	(2007)

Anisotropy	invariant	maps
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→	Alternative	representations:	Barycentric map
→	Each	limiting	state	occupies	equal	space
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Importance:

→	Anisotropy:	
• Caused	by	forcing	acting	along	different	directions

→	Isotropy:	
• Inertial	sub-range	(chapter	7)
• Often	assumed	in	models	(equal	contribution	of	all	variances	

to	TKE)
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Anisotropy	of	Reynolds	stress	tensor
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• auto-correlation	function

		
Ra(t ,τ )=

a’(t)⋅a’(t+τ )
a’2(t)

Def:

→ t=0:		 		Ra(t ,0)=1
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Turbulence	variables



• Def.
    

€ 

Ta(τ ) =: Ra
0

∞
∫ (τ )dτ

→model	(exponential	decay)	:	 { }aa TR /exp)( tt -=
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Integral	time	scale

→	characteristic	time
→	time	scale	over	which	turbulence	remains	correlated
‘memory’ of	turbulence

Tijera et	al.	2017
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Integral	time	scale

→ Alternative:	find	lag	t at	which	Ra(t)	=	1/e

Kaimal and	Finnigan 1994
t

R a
(t
)	
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Analogously:

    

€ 

Ra,x(x,Δx ) =:
a' (x)⋅a' (x+Δx)

a'2(x )

    

€ 

La,x (Δx) =: Ra,x
0

∞
∫ (Δx)dΔxIntegral	length	Scale:
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Integral	length	scale

→ In	practice	(using	Taylor’s	hypothesis)
La,x(Dx)	=Ta(t)		U
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• cannot	describe	instantaneous	fluctuations	
→	statistical	description,	PDF

• Reynolds	decomposition	and		averaging
→ co-variances:	

→ meaning:	turbulent	transport
→ especially	in	the	vertical (important)

• →	sensible	&	latent	heat,	momentum,	tracers
• turbulence	kinetic	and	potential	energy
• anisotropy
• integral	time	scales

( ) ( ) ( )
baba

bbaaba
¢¢+×=

¢+×¢+=×
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Summary:	Statistical	description


