

BOUNDARY LAYER METEOROLOGY

Prof. Ivana Stiperski, Dr. Manuela Lehner Department of Atmospheric and Cryospheric Sciences

Chapter 3

Statistical treatment of turbulence

Revision

Pdf's

- \rightarrow probability density function to describe turbulent variables
- → fully characterized through its *moments (variance, skewness..)* **Stationarity**
- \rightarrow all moments do not change with time
- \rightarrow in practice: up to second moments enough

Homogeneity

 \rightarrow is stationarity in space (horizontal!)

Averaging

 \rightarrow average over all possible realizations \rightarrow ensemble average Reynold's averaging

 \rightarrow separate the turbulence and the non-turbulent motions $\rightarrow u = \overline{u} + u'$

Revision

Ergodic Hypothesis

 \rightarrow " time ave. of stationary rand. var. and space ave. of homogeneous rand. var. converge to ensemble ave. over all realizations"

- \rightarrow time/space average \rightarrow ens. av.
- **Taylor Hypothesis**

 \rightarrow "Turbulence is frozen during the time it travels across instrument"

Time average

 \rightarrow Point measurements (turbulence towers) – average over which time?

Space average

- \rightarrow Distributed measurements
- \rightarrow Lagrangean platforms
- \rightarrow Volume averaged measurements

Revision

Covariances and Transport

- \rightarrow Non-linear turbulence product of two variables
- \rightarrow Non-zero if two signals are correlated (arise from same process)
- \rightarrow Represent turbulent fluxes (transport)
- \rightarrow Quadrant analysis: process

- kinematic fluxes: $\overline{w'\theta'},\overline{w'\overline{q'}},\overline{u'w'},(\overline{v'w'})$, $\overline{w'c'}$
	- In energy units:

ρ*c p w*'θ' s ensible heat $[H] = Wm^{-2}$ ^ρ*Lvw*' *q*' $\lambda = \lambda$ **latent heat** $\lambda = \frac{L}{E}$ $\lambda = \frac{Wm^{-2}}{2}$ ^ρ*u*'*w*' $[M] = Nm^{-2}$ turbulent transport of

 \rightarrow without average vertical velocity!

• flow description \rightarrow conservation eq.

$$
\frac{\partial \theta}{\partial t} \left(u_j \frac{\partial \theta}{\partial x_j} \right) = \rho_\theta \frac{\partial^2 \theta}{\partial x_j^2} - \frac{1}{\rho c_p} \frac{\partial NR_j}{\partial x_j} - \frac{L_v E}{\rho c_p} + \frac{R_c}{\rho c_p}
$$

for a turbulent flow:

- \rightarrow Reynolds decomposition (no change, but fluctuations considered) of all variables
- \rightarrow Reynolds average (whole equation)
- \rightarrow Result: *conservation equation for mean flow, but turbulence considered*
- \rightarrow in the terms, where we have products of two variables

• consider advection term

$$
= u_1 \frac{\partial \theta}{\partial x_1} + u_2 \frac{\partial \theta}{\partial x_2} + u_3 \frac{\partial \theta}{\partial x_3}
$$

- flow description \rightarrow conservation eq.
- consider advection term

$$
\frac{\partial \theta}{\partial t} \left\{ u_j \frac{\partial \theta}{\partial x_j} \right\} v_\theta \frac{\partial^2 \theta}{\partial x_j^2} - \frac{1}{\rho c_p} \frac{\partial N R_j}{\partial x_j} - \frac{L_v E}{\rho c_p} + \frac{R_c}{\rho c_p}
$$

$$
= u_1 \frac{\partial \theta}{\partial x_1} + u_2 \frac{\partial \theta}{\partial x_2} + u_3 \frac{\partial \theta}{\partial x_3}
$$

Reynolds decomposition: e
Ge

$$
= (\overline{u}_1 + u'_1) \frac{\partial(\overline{\theta} + \theta')}{\partial x_1} + (\overline{u}_2 + u'_2) \frac{\partial(\overline{\theta} + \theta')}{\partial x_2} + (\overline{u}_3 + u'_3) \frac{\partial(\overline{\theta} + \theta')}{\partial x_3}
$$

\n
$$
= \overline{u}_1 \frac{\partial \overline{\theta}}{\partial x_1} + \overline{u}_1 \frac{\partial \theta'}{\partial x_1} + u'_1 \frac{\partial \overline{\theta}}{\partial x_1} + u'_1 \frac{\partial \theta'}{\partial x_1}
$$

\n
$$
+ \overline{u}_2 \frac{\partial \overline{\theta}}{\partial x_2} + \overline{u}_2 \frac{\partial \theta'}{\partial x_2} + u'_2 \frac{\partial \overline{\theta}}{\partial x_2} + u'_2 \frac{\partial \theta'}{\partial x_2}
$$

\n
$$
+ \overline{u}_3 \frac{\partial \overline{\theta}}{\partial x_3} + \overline{u}_3 \frac{\partial \theta'}{\partial x_3} + u'_3 \frac{\partial \overline{\theta}}{\partial x_3} + u'_3 \frac{\partial \theta'}{\partial x_3}
$$

Reynolds averaging:

if:

 \rightarrow horizontally homogeneous \rightarrow mean vertical wind =0:

$$
\frac{\partial}{\partial x_1} = \frac{\partial}{\partial x_2} = 0
$$

$$
\overline{u}_3 = 0
$$

mean advection term:
=
$$
\overline{u_1}
$$
 $\frac{\partial \overline{F}}{\partial x_1}$ + $\overline{u_1}$ $\frac{\partial \overline{F}}{\partial x_1}$ + $\overline{u_2}$ $\frac{\partial \overline{F}}{\partial x_2}$ + $\overline{u_3}$ $\frac{\partial \overline{F}}{\partial x_3}$ + $\overline{u_3}$ $\frac{\partial \overline{F}}{\partial x_3}$ + $\overline{u_3}$ $\frac{\partial \overline{F}}{\partial x_3}$

 \rightarrow vertical advection term \neq zero (even if horiz. homogeneous) \rightarrow will see:

$$
u'_3 \frac{\partial \theta'}{\partial x_3} = \frac{\partial}{\partial x_3} (\overline{u'_3 \theta'})
$$

before Reynolds treatment:

$$
\frac{\partial \theta}{\partial t} + u_j \frac{\partial \theta}{\partial x_j} = v_\theta \frac{\partial^2 \theta}{\partial x_j^2} - \frac{1}{\rho c_\rho} \frac{\partial NR_j}{\partial x_j} - \frac{L_v E}{\rho c_\rho} + \frac{R_c}{\rho c_\rho}
$$

after:

$$
\frac{\partial \overline{\theta}}{\partial t} + u_j \frac{\partial \overline{\theta}}{\partial x_j} + \frac{\partial}{\partial x_s} (\overline{u'_3 \theta'}) = v_\theta \frac{\partial^2 \overline{\theta}}{\partial x_j^2} - \frac{1}{\rho c_\rho} \frac{\partial \overline{NR}_j}{\partial x_j} - \frac{\overline{L_y E}}{\rho c_\rho} + \frac{\overline{R}_c}{\rho c_\rho}
$$

 \rightarrow here: horiz. homogeneous & no mean vertical velocity \rightarrow additional term: flux divergence

Momentum transport

Special case:

• Co-variance between 2 velocity vectors

Tensor notation

$$
\vec{b} \cdot \vec{a} = (b_1, b_2, b_3) \cdot (a_1, a_2, a_3)
$$

=
$$
\begin{bmatrix} b_1a_1 & b_1a_2 & b_1a_3 \\ b_2a_1 & b_2a_2 & b_2a_3 \\ b_3a_1 & b_3a_2 & b_3a_3 \end{bmatrix}
$$

for velocity vector:

$$
\vec{u} \cdot \vec{u} = \begin{pmatrix} u, v, w \\ uv \end{pmatrix} \cdot \begin{pmatrix} u, v, w \\ vw & uw \\ vw & vw \end{pmatrix}
$$

$$
= \begin{pmatrix} uu & uv & uw \\ vu & vw & vw \\ wu & wv & ww \end{pmatrix}
$$

(u, v, w) instead of (u_1, u_2, u_3)

Momentum transport

• co-variance between 2 velocity vectors

$$
\overline{cov(u_i, u_j)} = \overline{u'_i u'_j} = \begin{pmatrix} \overline{u'u'} & \overline{u'v'} & \overline{u'w'} \\ \overline{v'u'} & \overline{v'v'} & \overline{v'w'} \\ \overline{w'u'} & \overline{w'v'} & \overline{w'w'} \end{pmatrix}
$$

 \rightarrow diagonal: variances \rightarrow outside diagonal:

 $U'W'$ vertical transport of horizontal momentum

?

 $W'U'$ horizontal transport of vertical momentum

Momentum transport

$$
\text{difference?} \qquad \overline{u'w'} \iff \quad \overline{w'u'}
$$

effect:

consider deformation of fluid elements € $\ddot{}$

 \rightarrow u' transported to the cube

Momentum transport

 \rightarrow u'w' and w'u' indistinguishable \rightarrow cov (u,w) is symmetric

process: friction

effect: deformation of fluid elements

- \rightarrow force on one side of cube
- \rightarrow units: pressure / shear stress

$$
[\overline{\rho u_i' u_j'}]=Nm^{-2}
$$

 \rightarrow Reynolds stress tensor

Reynolds stress tensor

$$
\text{Def: } -\rho u_i' u_j' =: \tau_{ij}
$$

process: friction effect: deformation of fluid elements

Typical profiles of fluxes

Typical profiles of heat fluxes

Why do we observe such a profile of heat flux?

Friction velocity

• near the ground:

- \rightarrow friction (\rightarrow turbulence, mechanical)
- \rightarrow shear stress, especially vertical
- \rightarrow *u*'*w*', *v*'w'
- \rightarrow indicates: $>$ how strong is deformation?

> how much momentum transport for compensation?

• Def.:
$$
u_* = \left[\overline{(u' \overline{w_0})^2 + (\overline{v' \overline{w_0})^2} \right]^{1/4}
$$

characteristic velocity: *friction velocity*

Friction velocity

• defined based on *surface fluxes:*

$$
U_* = \left[\left(\overline{U' \, W' \, O} \right)^2 + \left(\overline{V' \, W' \, O} \right)^2 \right]^{1/4}
$$

- fluxes approximately constant close to surface
- u_{*} characteristic velocity for Surface Layer

Surface layer

- Lowest 10% of PBL
- Fluxes change by 10%

example: wind tunnel \rightarrow surface A: hom roughness \rightarrow lowest ca 10%: , constant stress'

Raupach et al 1980

Friction velocity

Turbulence variables

• Reynolds decomposition and averaging: \rightarrow co-variances = fluxes (turbulent transport)

€

- Intensity of turbulence
- \rightarrow variances
- \rightarrow standard deviations

• turbulence intensity

$$
I_k = \frac{\sigma_{u_k}}{\overline{u}}
$$

Turbulence Kinetic Energy TKE

consider:

$$
\Rightarrow
$$
 kinetic energy: $E_{kin} = \frac{1}{2}\rho(u^2 + v^2 + w^2)$

$$
\Rightarrow \text{THE:} \hspace{1cm} TKE = \frac{1}{2} \rho \, \overline{u_{ij}^{\prime 2}}
$$

 \rightarrow how much kinetic energy in turbulence scales? \rightarrow see spectra

Energy Spectra

Turbulence Potential Energy TPE

consider:

$$
\Rightarrow
$$
 potential energy
of mean flow: $E_{pot} = \int_0^\infty \rho g z \, dz = R \int_0^\infty \rho T \, dz$

$$
\Rightarrow \text{TPE:} \qquad \qquad TPE = \frac{g}{\theta N^2} \frac{1}{2} \overline{\theta'^2}
$$

 \rightarrow mean potential temperature is proportional to T \rightarrow turbulent potential temperature is proportional to q^2 \rightarrow Zilitinkevich et al. 2007

 \rightarrow go back to Reynolds stress tensor

 $\tau =$ uu uv uw uv vv vw uw vw ww

 \rightarrow symmetric tensor with 6 independent variables: fluxes and variances

 \rightarrow Anisotropy: directional dependency

 \rightarrow Isotropic: (i.e. invariant to rotation)

 $\tau =$ 0 0 0 vv 0 0 0 ww

 \rightarrow no off-diagonal terms (fluxes)

 \rightarrow variances are the same $uu = vv = ww =$ 7 G **TKE**

 \rightarrow Look only at the anisotropy stress (components)

$$
b_{ij} = \frac{\mathbf{u}_i \mathbf{u}_j}{\mathbf{u}_i \mathbf{u}_i} - \frac{1}{3} \delta_{ij}
$$

 \rightarrow Tensor analysis: eigenvalues and eigenvectors (3)

 \rightarrow Anisotropy can be described by a set of 2 invariants that are functions of eigenvalues of the anisotropy tensor (Lumley & Newmann 1977)

 \rightarrow Invariants:

$$
\eta^2 = \frac{1}{3}(\lambda_{\text{I}}^2 + \lambda_{\text{I}}\lambda_{\text{II}} + \lambda_{\text{II}}^2)
$$

$$
\xi^3 = -\frac{1}{2}\lambda_{\text{I}}\lambda_{\text{II}}(\lambda_{\text{I}} + \lambda_{\text{II}})
$$

Anisotropy invariant maps

\rightarrow Lumley triangle

\rightarrow All realizable states of turbulence are within the map

 \rightarrow 3 limiting states: Isotropic Two-component One-component

Hamilton and Cal (2015)

universität nnsbrucl

Anisotropy invariant maps

 \rightarrow Alternative representations: Barycentric map \rightarrow Each limiting state occupies equal space

Importance:

- \rightarrow Anisotropy:
- Caused by forcing acting along different directions

\rightarrow Isotropy:

- Inertial sub-range (chapter 7)
- Often assumed in models (equal contribution of all variances to TKE)

Turbulence variables

• auto-correlation function Def: R

$$
R_a(t,\tau) = \frac{a'(t) \cdot a'(t+\tau)}{a'^2(t)}
$$

 \rightarrow t=0: $R_a(t,0)=1$

Integral time scale

• Def.
$$
T_a(\tau) = \int_{0}^{\infty} R_a(\tau) d\tau
$$

 \rightarrow characteristic time

 $\overline{}$ \rightarrow time scale over which turbulence remains correlated 'memory' of turbulence

$$
\rightarrow
$$
 model (exponential decay): $R_a(\tau) = \exp{-\tau/T_a}$

 \rightarrow Alternative: find lag τ at which R_a(τ) = 1/e

Kaimal and Finnigan 1994

Integral length scale

Analogously:
$$
R_{a,x}(x, \Delta x) = \frac{a'(x) \cdot a'(x + \Delta x)}{a'^2(x)}
$$

 $\ddot{}$

Integral length Scale:
$$
L_{a,x}(\Delta x) = \int_{0}^{\infty} R_{a,x}(\Delta x) d\Delta x
$$

 $L_{a,x}(\Delta x) = T_a(\tau)$ U \rightarrow In practice (using Taylor's hypothesis)

Summary: Statistical description

- cannot describe instantaneous fluctuations \rightarrow statistical description, PDF
- Reynolds decomposition and averaging \rightarrow co-variances:

$$
\overline{(a \cdot b)} = (\overline{a} + a') \cdot (\overline{b} + b')
$$

$$
= \overline{a} \cdot \overline{b} + a'b'
$$

 \rightarrow meaning: turbulent transport \rightarrow especially in the **vertical** (important)

- \rightarrow sensible & latent heat, momentum, tracers
- turbulence kinetic and potential energy
- anisotropy
- integral time scales

