

BOUNDARY LAYER METEOROLOGY

Prof. Ivana Stiperski, Dr. Manuela Lehner Department of Atmospheric and Cryospheric Sciences

Chapter 3

Statistical treatment of turbulence

Revision

Pdf's

- ightarrow probability density function to describe turbulent variables
- → fully characterized through its moments (variance, skewness..)
 Stationarity
- ightarrow all moments do not change with time
- ightarrow in practice: up to second moments enough

Homogeneity

 \rightarrow is stationarity in space (horizontal!)

Averaging

 \rightarrow average over all possible realizations \rightarrow ensemble average Reynold's averaging

ightarrow separate the turbulence and the non-turbulent motions ightarrow $\mathbf{u}=ar{u}+u'$

Revision

Ergodic Hypothesis

 \rightarrow " time ave. of stationary rand. var. and space ave. of homogeneous rand. var. converge to ensemble ave. over all realizations"

 \rightarrow time/space average \rightarrow ens. av.

Taylor Hypothesis

 \rightarrow "Turbulence is frozen during the time it travels across instrument"

Time average

 \rightarrow Point measurements (turbulence towers) – average over which time?

Space average

- ightarrow Distributed measurements
- \rightarrow Lagrangean platforms
- ightarrow Volume averaged measurements

Revision

Covariances and Transport

- \rightarrow Non-linear turbulence product of two variables
- \rightarrow Non-zero if two signals are correlated (arise from same process)
- \rightarrow Represent turbulent fluxes (transport)
- ightarrow Quadrant analysis: process

- kinematic fluxes: $\overline{w'\theta'}, \overline{w'q'}, \overline{u'w'}, (\overline{v'w'}), \overline{w'c'}$
 - In energy units:

 $\rho c_{\rho} \overline{w' \theta'} =: H \qquad \begin{array}{c} \frac{\text{turbulent transport of}}{\text{sensible heat}} \qquad [H] = Wm^{-2} \\ \rho L_{\nu} \overline{w' q'} =: L_{\nu} E \qquad \begin{array}{c} \text{latent heat} \qquad [L_{\nu} E] = Wm^{-2} \\ \rho \overline{u' w'} =: M \qquad \begin{array}{c} \text{momentum} \qquad [M] = Nm^{-2} \end{array}$

 \rightarrow without average vertical velocity!

• flow description \rightarrow conservation eq.

$$\frac{\partial \theta}{\partial t} \left(u_j \frac{\partial \theta}{\partial x_j} \right) = v_\theta \frac{\partial^2 \theta}{\partial x_j^2} - \frac{1}{\rho c_p} \frac{\partial NR_j}{\partial x_j} - \frac{L_v E}{\rho c_p} + \frac{R_c}{\rho c_p}$$

for a turbulent flow:

- → Reynolds decomposition (no change, but fluctuations considered) of all variables
- \rightarrow Reynolds average (whole equation)
- → Result: conservation equation for mean flow, but turbulence considered
- ightarrow in the terms, where we have products of two variables
- consider advection term

$$= U_1 \frac{\partial \theta}{\partial x_1} + U_2 \frac{\partial \theta}{\partial x_2} + U_3 \frac{\partial \theta}{\partial x_3}$$

- flow description \rightarrow conservation eq.
- consider advection term

$$\frac{\partial \theta}{\partial t} \underbrace{\left(u_{j} \frac{\partial \theta}{\partial x_{j}} \right)}_{=} v_{\theta} \frac{\partial^{2} \theta}{\partial x_{j}^{2}} - \frac{1}{\rho c_{p}} \frac{\partial NR_{j}}{\partial x_{j}} - \frac{L_{v}E}{\rho c_{p}} + \frac{R_{c}}{\rho c_{p}}$$
$$= u_{1} \frac{\partial \theta}{\partial x_{1}} + u_{2} \frac{\partial \theta}{\partial x_{2}} + u_{3} \frac{\partial \theta}{\partial x_{3}}$$

Reynolds decomposition:

$$= (\overline{u}_{1} + u_{1}') \frac{\partial(\overline{\theta} + \theta')}{\partial x_{1}} + (\overline{u}_{2} + u_{2}') \frac{\partial(\overline{\theta} + \theta')}{\partial x_{2}} + (\overline{u}_{3} + u_{3}') \frac{\partial(\overline{\theta} + \theta')}{\partial x_{3}}$$

$$= \overline{u}_{1} \frac{\partial\overline{\theta}}{\partial x_{1}} + \overline{u}_{1} \frac{\partial\theta'}{\partial x_{1}} + u_{1}' \frac{\partial\overline{\theta}}{\partial x_{1}} + u_{1}' \frac{\partial\theta'}{\partial x_{1}}$$

$$+ \overline{u}_{2} \frac{\partial\overline{\theta}}{\partial x_{2}} + \overline{u}_{2} \frac{\partial\theta'}{\partial x_{2}} + u_{2}' \frac{\partial\overline{\theta}}{\partial x_{2}} + u_{2}' \frac{\partial\theta'}{\partial x_{2}}$$

$$+ \overline{u}_{3} \frac{\partial\overline{\theta}}{\partial x_{3}} + \overline{u}_{3} \frac{\partial\theta'}{\partial x_{3}} + u_{3}' \frac{\partial\overline{\theta}}{\partial x_{3}} + u_{3}' \frac{\partial\theta'}{\partial x_{3}}$$

Reynolds averaging:

if:

→ horizontally homogeneous
 → mean vertical wind =0:

$$\partial / \partial x_1 = \partial / \partial x_2 = 0$$

 $\overline{u}_3 = 0$

mean advection term: $a\overline{P}$ $\overline{aP'}$ $a\overline{P}$ $\overline{aP'}$

$$=\overline{U}_{1}\frac{\partial \theta'}{\partial x_{1}} + U_{1}'\frac{\partial \theta'}{\partial x_{1}} + \overline{U}_{2}\frac{\partial \theta'}{\partial x_{2}} + U_{2}'\frac{\partial \theta'}{\partial x_{2}} + \overline{U}_{3}\frac{\partial \theta}{\partial x_{3}} + U_{3}'\frac{\partial \theta'}{\partial x_{3}}$$

→ vertical advection term \neq zero (even if horiz. homogeneous) → will see:

$$u_3'\frac{\partial\theta'}{\partial x_3} = \frac{\partial}{\partial x_3}(\overline{u_3'\theta'})$$

before Reynolds treatment:

$$\frac{\partial \theta}{\partial t} + u_j \frac{\partial \theta}{\partial x_j} = v_\theta \frac{\partial^2 \theta}{\partial x_j^2} - \frac{1}{\rho c_p} \frac{\partial NR_j}{\partial x_j} - \frac{L_v E}{\rho c_p} + \frac{R_c}{\rho c_p}$$

after:

$$\frac{\partial \overline{\theta}}{\partial t} + u_{j} \frac{\partial \overline{\theta}}{\partial x_{j}} + \frac{\partial}{\partial x_{3}} (\overline{u_{3}^{\prime} \theta^{\prime}}) = v_{\theta} \frac{\partial^{2} \overline{\theta}}{\partial x_{j}^{2}} - \frac{1}{\rho c_{\rho}} \frac{\partial \overline{NR}_{j}}{\partial x_{j}} - \frac{\overline{L_{v} E}}{\rho c_{\rho}} + \frac{\overline{R}_{c}}{\rho c_{\rho}}$$

 \rightarrow here: horiz. homogeneous & no mean vertical velocity \rightarrow additional term: flux divergence

Momentum transport

Special case:

• Co-variance between 2 velocity vectors

Tensor notation

$$\vec{b} \cdot \vec{a} = (b_1, b_2, b_3) \cdot (a_1, a_2, a_3)$$
$$= \begin{bmatrix} b_1 a_1 & b_1 a_2 & b_1 a_3 \\ b_2 a_1 & b_2 a_2 & b_2 a_3 \\ b_3 a_1 & b_3 a_2 & b_3 a_3 \end{bmatrix}$$

for velocity vector:

$$\vec{u} \cdot \vec{u} = (u, v, w) \cdot (u, v, w)$$
$$= \begin{pmatrix} uu & uv & uw \\ vu & vv & vw \\ wu & wv & ww \end{pmatrix}$$

(u, v, w) instead of (u_1, u_2, u_3)

Momentum transport

• co-variance between 2 velocity vectors

$$\overline{\operatorname{cov}(u_{i}, u_{j})} = \overline{u_{i}' u_{j}'} = \begin{pmatrix} \overline{u'u'} & \overline{u'v'} & \overline{u'w'} \\ \overline{v'u'} & \overline{v'v'} & \overline{v'w'} \\ \overline{w'u'} & \overline{w'v'} & \overline{w'w'} \end{pmatrix}$$

 \rightarrow diagonal: variances \rightarrow outside diagonal:

u'w' vertical transport of horizontal momentum

?

w'u' horizontal transport of vertical momentum

Momentum transport

difference?
$$\overline{u'w'} \longleftrightarrow \overline{w'u'}$$

effect:

consider deformation of fluid elements

 \rightarrow u' transported to the cube

Momentum transport

 \rightarrow u'w' and w'u' indistinguishable \rightarrow cov (u,w) is symmetric

process: friction

effect: deformation of fluid elements

- ightarrow force on one side of cube
- \rightarrow units: pressure / shear stress

$$[\rho \overline{u'_i u'_j}] = Nm^{-2}$$

\rightarrow Reynolds <u>stress</u> tensor

Reynolds stress tensor

Def:
$$-\rho U'_i U'_j =: \tau_{ij}$$

process: friction
effect: deformation of fluid elements

Typical profiles of fluxes

BLM | Innsbruck | Stiperski | 2020

Typical profiles of heat fluxes

Why do we observe such a profile of heat flux?

Friction velocity

• near the ground:

- \rightarrow friction (\rightarrow turbulence, mechanical)
- \rightarrow shear stress, especially vertical
- ightarrow u'w', v'w'
- \rightarrow indicates: > how strong is deformation?

> how much momentum transport for compensation?

• Def.:
$$U_* = \left[\left(\overline{u''}, \overline{w_o'}\right)^2 + \left(\overline{v''}, \overline{w_o'}\right)^2\right]^{1/4}$$

characteristic velocity: *friction velocity*

Friction velocity

• defined based on *surface fluxes*:

$$U_{\star} = \left[\left(\overline{U' W_{\odot}}^{2} + \left(\overline{V' W_{\odot}}^{2} \right)^{2} \right]^{1/4}$$

- fluxes approximately constant close to surface
- u_{*} characteristic velocity for Surface Layer

Surface layer

- Lowest 10% of PBL
- Fluxes change by 10%

example: wind tunnel
→ surface A: hom roughness
→ lowest ca 10%:
,constant stress'

Raupach et al 1980

Friction velocity

Turbulence variables

- Reynolds decomposition and averaging:
 → co-variances = fluxes (turbulent transport)
- Intensity of turbulence
- \rightarrow variances
- ightarrow standard deviations

• turbulence intensity

$$I_k = \frac{\sigma_{u_k}}{\overline{u}}$$

Turbulence Kinetic Energy **TKE**

consider:

$$\rightarrow$$
 kinetic energy: $E_{kin} = \frac{1}{2}\rho(u^2 + v^2 + w^2)$

$$\rightarrow$$
 TKE: $TKE = \frac{1}{2} \rho \, \overline{u_{ij}'^2}$

 \rightarrow how much kinetic energy in turbulence scales? \rightarrow see spectra

Energy Spectra

Turbulence Potential Energy TPE

consider:

ightarrow potential energy of mean flow: $E_{pot} = \int_0^\infty \rho g z \, dz = \mathrm{R} \int_0^\infty \rho T \, dz$

$$\rightarrow$$
 TPE: $TPE = \frac{g}{\theta N^2} \frac{1}{2} \overline{\theta'^2}$

→ mean potential temperature is proportional to T → turbulent potential temperature is proportional to $q^{'2}$ → Zilitinkevich et al. 2007

ightarrow go back to Reynolds stress tensor

 $\tau = \begin{bmatrix} uu \ uv \ uw \\ uv \ vv \ vw \\ uw \ vw \ ww \end{bmatrix}$

 \rightarrow symmetric tensor with 6 independent variables: fluxes and variances

 \rightarrow Anisotropy: directional dependency

 \rightarrow Isotropic: (i.e. invariant to rotation)

 $\tau = \begin{bmatrix} uu & 0 & 0\\ 0 & vv & 0\\ 0 & 0 & ww \end{bmatrix}$

 \rightarrow no off-diagonal terms (fluxes)

 \rightarrow variances are the same $uu = vv = ww = \frac{2}{3}TKE$

 \rightarrow Look only at the anisotropy stress (components)

$$b_{ij} = \frac{u_{i}'u_{j}'}{u_{i}'u_{i}'} - \frac{1}{3}\delta_{ij}$$

 \rightarrow Tensor analysis: eigenvalues and eigenvectors (3)

 \rightarrow **Anisotropy** can be described by a set of **2** invariants that are functions of eigenvalues of the anisotropy tensor (Lumley & Newmann 1977)

 \rightarrow Invariants:

$$\eta^{2} = \frac{1}{3} (\lambda_{\mathrm{I}}^{2} + \lambda_{\mathrm{I}} \lambda_{\mathrm{II}} + \lambda_{\mathrm{II}}^{2})$$
$$\xi^{3} = -\frac{1}{2} \lambda_{\mathrm{I}} \lambda_{\mathrm{II}} (\lambda_{\mathrm{I}} + \lambda_{\mathrm{II}})$$

Anisotropy invariant maps

\rightarrow Lumley triangle

 \rightarrow All realizable states of turbulence are within the map

→ 3 limiting states:
 Isotropic
 Two-component
 One-component

Hamilton and Cal (2015)

universität innsbruck

Anisotropy invariant maps

 \rightarrow Alternative representations: Barycentric map \rightarrow Each limiting state occupies equal space

Importance:

- \rightarrow Anisotropy:
- Caused by forcing acting along different directions

\rightarrow Isotropy:

- Inertial sub-range (chapter 7)
- Often assumed in models (equal contribution of all variances to TKE)

Turbulence variables

• auto-correlation function **Def**:

$$R_{a}(t,\tau) = \frac{a'(t) \cdot a'(t+\tau)}{\overline{a'^{2}}(t)}$$

 \rightarrow t=0: $R_a(t,0)=1$

Integral time scale

• Def.
$$T_a(\tau) =: \int_0^\infty R_a(\tau) d\tau$$

ightarrow characteristic time

 \rightarrow time scale over which turbulence remains correlated 'memory' of turbulence

$$\rightarrow$$
 model (exponential decay) : $R_a(\tau) = \exp\{-\tau / T_a\}$

 \rightarrow Alternative: find lag τ at which $R_a(\tau) = 1/e$

Kaimal and Finnigan 1994

Integral length scale

Analogously:
$$R_{a,x}(x,\Delta x) =: \frac{\overline{a'(x) \cdot a'(x + \Delta x)}}{\overline{a'^2}(x)}$$

Integral length Scale:

$$L_{a,x}(\Delta x) =: \int_{0}^{\infty} R_{a,x}(\Delta x) d\Delta x$$

→ In practice (using Taylor's hypothesis) $L_{a,x}(\Delta x) = T_a(\tau) U$

Summary: Statistical description

- cannot describe instantaneous fluctuations
 → statistical description, PDF
- Reynolds decomposition and averaging \rightarrow co-variances:

$$\overline{(a \cdot b)} = \overline{(\overline{a} + a') \cdot (\overline{b} + b')}$$
$$= \overline{a} \cdot \overline{b} + \overline{a'b'}$$

 \rightarrow meaning: turbulent transport \rightarrow especially in the **vertical** (important)

- \rightarrow sensible & latent heat, momentum, tracers
- turbulence kinetic and potential energy
- anisotropy
- integral time scales

