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Chapter	3

Statistical	treatment	of	turbulence



3.1.	Averaging,	Stationarity	and	Homogeneity

3.2.	Taylor	Hypothesis

3.3.	Reynolds	Decomposition

3.4.	Co-variances	and	their	Physical	Meaning

3.5.	Other	Turbulence	variables

Content
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Why	do	we	use	statistics	when	dealing	
with	turbulence?
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Motivation
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• irregular,	different	each	second…
• cannot	/	do	not	want:	describe	each	trajectory
• statistical	treatment!

u1

u4

u3

u2

u

Motivation
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5ms-1 6ms-14ms-1

number

wind	speed

• as	bin	size	→	0

• Theoretical	distribution
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Represent	measurements	depending	on	their	likelihood

Distributions
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5ms-1 6ms-14ms-1

number

wind	speed

→ Likelihood	presented	through:	Probability	Density	Function(PDF,	P)

 σx
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→ Characteristic	parameters	
describing	the	distribution𝑋"

Distributions
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Px

x/x*

 σx  σx
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→ First	moment:	mean

→	Second	moment:	variance

Distributions	- Variance
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→ Third	moment:	Skewness

Distributions	- Skewness
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→ Third	moment:	Skewness

• symmetric?

• e.g.,	vertical	velocity	in	CBL

Distributions	- Skewness
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→	single	‘thermals’	with	strong	positive	w
→	occupy	about	30-40%	of	surface
→ median	(w)	slightly	negative
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CBL	– skewness	w
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→	Fourth	moment:	Kurtosis

• Frequency	of	extremes	
outliers

• (flatness	of	a	distribution)
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Distributions	- Kurtosis

Px

x/x*



• completely	characterized	by	its	moments

  

€ 

a = aPa
−∞

∞
∫ da

    

€ 

f (a) = f (a)Pa
−∞

∞
∫ da

  

€ 

an = anPa
−∞

∞
∫ da

    

€ 

(a − a )n = (a − a )nPa
−∞

∞
∫ dx

→	n=0:	norm
→	n=1:	=0
→	n=2:	variance
→	n=3:	skewness

• average:

• generally:

• moments:

• central	moments:
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Probability	density	function



    

€ 

Pa =
1

2πσa

exp −
1
2

(a−a )2

σa
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Moments	of	the	normal	distribution
→	skewness	=	0
→	kurtosis	=	3
→	all	higher	moments	=	0
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Normal	Distribution
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1.	Stationarity
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Tools
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Consider:	time	correlation	of	a	variable	with	itself

),(:)’()( TCtata a t=×

Auto-covariance	function

t =	t	- t’
T=	abs.	time
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Stationarity
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stationary	turbulence	     

€ 

a(t ) ⋅a(t' ) =:Ca(τ )

→	Ca independent	of	T
→		for	all	t
→ in	particular	also	for	t =	0
→ =	 variance

		a(t)⋅a(t)=:Ca(0)
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Stationary	turbulence
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→	variance	independent	of	T

order	of	stationarity:
→	correlation	of	the	N-th order

    

€ 

a(t1) ⋅a(t2) ⋅a(t3) ⋅ ⋅ ⋅ ⋅a(tN) =:Ca
N(τ1,τ2,τ3,...τN)

→	independent	of	T
→	in	particular:	for

ALL moments	of	the	distribution	independent	of	T
in	practice:	
average,	variance	independent	of	T	‘enough’

	τ = 0
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Stationary	turbulence
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• turbulence	is	never really	stationary
→	turbulence	is	dissipative

2	time	scales

  

€ 

Tf =	‘forcing	time	scale’:	external	processes
→ can	be	several	hours
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Quasi	- stationarity
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• Turbulence	is	never really	stationary
-->	Turbulence	is	dissipative

2	time	scales

=	‘forcing	time	scale’:	external	processes

=	change	of	mean	characteristics
→	how	long	until	‘mean	profile’	has	

adapted	to	(external)	change	

Quasi-stationarity:   

€ 

Tm << Tf

  

€ 

Tf

mT
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Quasi	- stationarity
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Example:	Solar	eclipse

Higgins	et	al.2019:	Ensemble-Averaging	Resolves	Rapid
Atmospheric	Response	to	the	2017	Total	Solar	Eclipse

https://www.frontiersin.org/articles/10.3389/feart.2019.00
198/full
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Example:	Solar	eclipse



23BLM	|	Innsbruck	I	Stiperski	I	2020

Example:	Solar	eclipse
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Example:	Solar	eclipse
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1. Stationarity
2. Homogeneity

→ analogue	of	stationarity	in	space

      

€ 

a(x) ⋅a(x' ) =:Ca(Δx,
 
r ) Dx =	x-x’

r	=	position	vector

→	homogeneous:

    

€ 

a(x) ⋅a(x' ) =:Ca(Δx) independent	of	r

→	for	all	higher	moments
→	in	particular	Dx=0
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Tools
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homogeneity	corresponds	to	stationarity	in	space	 (horiz)
→	if	(sfc)	forcing	=	const.

stationary	flow
possible

no	stationary
flow	(in	
Lagrangian	
framework)

possibly	
stationary	flow
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Homogeneity	 Stationarity
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1. Stationarity
2. Homogeneity
3. Averaging
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Tools
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• goal	(e.g.	of	a	measurement):
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Averaging
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• goal	(e.g.	of	a	measurement):	
→ not: ‘value’	for	this	time	at	this	place

→ would	like:	to	learn	something	about	the	
physical	processes,	which	produce	such	a	
time	series

→ to	this	time	series,	there	is	one	
1m	aside	/	‘17	minutes’	earlier,	later,	...

→		the	random	process	(producing	this time	
series)	both	spatially	as	well	as	in	the	time	
domain	theoretically	goes	to	infinity						
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Averaging
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Ensemble =	all	possible	realizations	that	can	
appear	for	a	stationary	process

→ average	over	all	realizations:

),(    for    ),(1
1

txaatxa
N

a
N

i
i

e !!
== å

=

atmosphere: ¥=N

BLM	|	Innsbruck	I	Stiperski	I	2020

Ensemble	averages
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E.H:	under	certain	conditions:

  

€ 

a x → a e

  

€ 

a t → a e

Ergodicity will	always	(implicitly)	be	assumed	
in	real	applications

Wyngaard (2010):
‘The	property	that	the	time	average	of	a	stationary	random	
variable	and	the	space	average	of	a	homogeneous	random	
variable	converge	to	the	ensemble	average	is	called	ergodicity’.
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Ergodic Hypothesis
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€ 

a x =
1
S

a(
 
x ,t )ds

S
∫∫Spatial	average:

→	want	to	know	(structure	of	the	turbulence)
→	difficult	to	obtain	(lots	of	instruments!)

→	if	horizontally	homogeneous:
one	characteristic	profile!

HATS	field	campaign
→	Horst	et	al	2004
→	small-scale	turbulence

BLM	|	Innsbruck	I	Stiperski	I	2020

Averaging



→	if	horizontally	homogeneous:
one	characteristic	profile!

A

x3
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Averaging
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Spatial	Averaging
Fiber Optic	Distributed	Sensing	(FODS)
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Spatially	Integrated	Measurements

Scintillometer
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€ 

a x =
1
S

a(
 
x ,t )ds

S
∫∫spatial	average:

time	average:
      

€ 

a t =
1
T

a(
 
x ,t)dt

t1

t1+T
∫

→	result	of	a	measurement:

  

€ 

a t xe aa   resp.  →	often:	determine	

→	Ergodic Hypothesis!
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Averaging
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Table 3.1: Useful rules for averaging

A, B are variables, c is a constant

  

€ 

c = c

  

€ 

c ⋅ A( ) = c ⋅ A 

  

€ 

A ( ) = A An average behaves like a constant

  

€ 

A ⋅B( ) = A ⋅B 

  

€ 

A ⋅B( ) ≠ A ⋅B The average of a product is not, in general,
the product of the averages

  

€ 

A + B( ) = A + B 

  

€ 

∂A
∂x

% 

& 
' 

( 

) 
* =

∂A 
∂x

This is an important property and derives
from the Leibnitz theorem.  

€ 

∂A
∂x

# 

$ 
% 

& 

' 
( =

∂A 
∂x
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Averaging	Rules
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• Pdf’s
→ probability	density	function	to	describe	

the	variables
→ fully	characterized	through	its	moments

• stationarity
→ all	moments	do	not	change	with	time
→ in	practice:	up	to	second	moments	enough

• homogeneity
→ is	stationarity	in	space

• averaging
→ would	need:	average	over	all	possible	realizations
→ ensemble	average
→ certain	conditions:	time/space	average	→	ens.	av.
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Intermediate	Summary
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1. Stationarity
2. Homogeneity
3. Averaging
4. Taylor	Hypothesis
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Tools
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• Mostly:	have	time	series	(one	instrument,	i.e.	place)

BLM	|	Innsbruck	I	Stiperski	I	2020

Taylor	Hypothesis
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• Mostly:	have	time	series	(one	instrument,	i.e.	place)
→	want	information	on	the	structure	of	

turbulence

More	generally:

u →	how	can	I	observe	‘an	eddy’?
→	would	need	1000’s	of	instruments
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Taylor	Hypothesis
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Hypothesis:
The	turbulence	can	be	assumed	to	be	frozen
during	the	time	it	travels	across	the	point	of	
observation.
→	Taylor’s	Frozen	Turbulence	Hypothesis
→	Geoffrey	I.	Taylor,	1938
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Taylor	Hypothesis



BLM	|	Innsbruck	I	Stiperski	I	2020

Taylor	Hypothesis
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Hypothesis:
The	turbulence	can	be	assumed	to	be	frozen
during	the	time	it	travels	across	the	point	of	
observation.

→	applies,	if:

uLT ef />>

→ process	is	stationary
→ Tf =	forcing	time	scale
→ Le=	characteristic	length	
→ u	=	average	wind	speed

→	in	practice:	

5.0/ <uus
→ =	measure	of	activity

of	turbulence
→ u			=	measure	of	advection							

 σ u
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Taylor	Hypothesis
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mathematically:

  

Dζ
Dt

= ∂ζ
∂ t

+ ∂ζ
∂ x

∂ x
∂ t

+ ∂ζ
∂y

∂y
∂ t

+ ∂ζ
∂z

∂z
∂ t

= 0

  Dζ / Dt = 0

u wv
‘frozen’

→		measured	change	in	time	corresponds	to	advected
spatial	structure	

‘conservative	flow	field’	
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Taylor	Hypothesis

𝜕𝜁
𝜕𝑡
= −𝑣⃑ * 𝛻𝜁
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• averaging

x

t

→	is	it	now	turbulence?
→	or	average	flow?
→	averaging	over	what	time?
→	where	does	turbulence	remain	after	

averaging?

BLM	|	Innsbruck	I	Stiperski	I	2020

Reynolds	Decomposition
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• fluctuations	with	different	periodicity
→ seasonal	cycle,	daily	cycle,	fast	fluctuations

x

t

• spectral	distribution
→	how	much	‘power’	in	which	periodicity?
→ (see	later,	chapter	7)
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Reynolds	Decomposition
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period	(s)

daily	cycle

turbulence

spectral	gap

Van	Gorsel (2004)
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(Idealized)	Energy	Spectra
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• pragmatic	choice:
→	fluctuations	faster	than	about	1h:	turbulence
→	longer:	average	flow

→ each	variable	a:     

€ 

a = a +a'

total	
signal

average fluctuation

  

€ 

a =	time	average
actually:	ensemble	average
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Reynolds	Decomposition



a

averaging	interval	t

in	practice:
• measure	a(t):								 time	resolution	big	enough	(how	to	choose	it?)
• compute:																 for	each	averaging	period
• from	there:	a’(t):						 for	each	measurement	(20Hz)

a

a’(t2)

a’(t1)

t

a
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Reynolds	Decomposition
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Computation	Rules	for	Reynolds	Decomposition
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t

a,	b a

b

0’’ <ba

		a’b’(t2)< 0		a’b’(t1)< 0

b

a

→	opposite	behavior...
→	on	average	(here):

→	

averaging	interval	t

t1 t2

BLM	|	Innsbruck	I	Stiperski	I	2020

Meaning	of	covariances
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t

a,	b
a

b

    

€ 

a'b' > 0

    

€ 

a'b'> 0    

€ 

a'b'> 0
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Meaning	of	covariances

→	similar	behavior....
→	on	average	(here):

→	

averaging	interval	t
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t

a, b a

b
→	a,b poorly	correlated

→	     

€ 

a'b' ≈ 0
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Meaning	of	covariances
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• physical	meaning
→ turbulent	transport

• in	general:	
→ consider:	physical	description	of	transport
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Meaning	of	covariances
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let:	X	=	additive	quantity		(‘countable’)		

  

€ 

Χ = ρχ
V
∫∫∫ dVthen	 [X]	=	x

=	specific	quantity [𝜒]	=	x/kgχ
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Description	of	Transport



58

  

€ 

FΧ =
Χ

ΔAΔt
=

ρχV
ΔAΔt

=
ρχΔAΔx
ΔAΔt

= ρχ
Δx
Δt

transport of
X	through	the
surface	 DA		:

→	infinitesimal:	
    

€ 

 
F χ = ρχ

 
v - 3d

- vector	quantity
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Description	of	Transport
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→	infinitesimal:	     

€ 

 
F χ = ρχ

 
v 

→ Flux	=			r density	of	fluid	
x			specific	transported	quantity
v			transport	velocity

→ co-variances:
→ often:	a	or	b	is	a	velocity	component

    

€ 

a'b'

→ for	example:	co-variance:
→ transport	of	‘a’	in	vertical	direction

    

€ 

a' w'
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Description	of	Transport
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• these	co-variances	will	be	important:

• with:	w’	and	a	scalar	( q’ ,	q’),	resp.	w’	and	u’
→ expresses	transport	of	scalar	quantities	in

vertical direction

• each	instantaneous	value,	e.g.	:
→	instantaneous	flux	(transport)	
→ average:	random	or	systematic,	e.g.:

 ′w ′θ
 ′w ′θ

  ′w ′θ , ′w ′q , ′u ′w , ( ′v ′w )
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Covariances =	Turbulent	Transport



downward	transport:

q’		>	0
w’	<	0

relatively
warm	air	
goes	

relatively	cold	
air	goes	

q’ <	0
w’	>	0

[K
]		
		

both:	
downward	transport	of	heat
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upward	transport:

q’  > 0
w’ > 0

relatively	warm	
air	goes	

relatively	cold	
air	goes	

q’ < 0
w’ > 0

(→ transports
heat	deficit	 )	

[K
]		
		

both:	
upward	transport	of	heat

BLM	|	Innsbruck	I	Stiperski	I	2020



63

typical downward eddy
typical upward eddy

w‘<0
w‘>0

 ′θ > 0

 ′θ < 0
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Turbulent	Fluxes



instantly:
w’q’	<	0
w’q’		>	0

average:

    

€ 

w'θ ' ≠ 0
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Quadrants

w’

q’

+ -

- -

+ +

- +

Upward	kinematic	
heat	flux

Downward	kinematic	
heat	flux



instantly:
w’u’	<	0
w’u’	>	0
average:

    

€ 

w'u' ≠ 0

→ investigate	type	of	transport
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Quadrants

w’

u’

+ -

- -

+ +

- +

Upward	kinematic	
momentum	flux

Downward	kinematic	
momentum	flux

ejections

sweeps

outward	
interactions

inward	
interactions



equilibrium	conditions	(Surface	Layer):
total	stress	=	ejections	+	sweeps	+			OutIn +			 InIn

    

€ 

u'w'tot = 0.6u'w'tot + 0.6u'w'tot −0.1u'w'tot −0.1u'w'tot

w’>0
u’<0

w’<0
u’>0

w’>0
u’>0

w’<0
u’<0

Raupach	et	al	1981

homogeneous
surface

other surface
types

H=0				include	all	eddy
sizes
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Quadrant	analysis:	Momentum	Transport

ejection

sweeps

outward	
interaction

inward	
interaction



urban	canopy:

‚orderly‘ shear	flow
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Quadrant	analysis:	Momentum	Transport


