

BOUNDARY LAYER METEOROLOGY

Prof. Ivana Stiperski, Dr. Manuela Lehner Department of Atmospheric and Cryospheric Sciences

Chapter 3

Statistical treatment of turbulence

Content

3.1. Averaging, Stationarity and Homogeneity

- 3.2. Taylor Hypothesis
- 3.3. Reynolds Decomposition
- 3.4. Co-variances and their Physical Meaning
- 3.5. Other Turbulence variables

Why do we use statistics when dealing with turbulence?

Motivation

- irregular, different each second...
- cannot / do not want: describe each trajectory
- statistical treatment!

Distributions

Represent measurements depending on their likelihood

number

Distributions

 \rightarrow Likelihood presented through: Probability Density Function(PDF, P)

Distributions - Variance

Distributions - Skewness

\rightarrow Third moment: Skewness

Distributions - Skewness

→ Third moment: Skewness

- symmetric?
- e.g., vertical velocity in CBL

CBL – skewness w

- \rightarrow single 'thermals' with strong positive w
- ightarrow occupy about 30-40% of surface
- \rightarrow median (w) slightly negative

Distributions - Kurtosis

ightarrow Fourth moment: Kurtosis

- Frequency of extremes outliers
- (flatness of a distribution)

Probability density function

- completely characterized by its moments
- average:
- generally:

$$\overline{a} = \int_{-\infty}^{\infty} aP_a da$$
$$\overline{f(a)} = \int_{-\infty}^{\infty} f(a)P_a da$$

 ∞

- moments:

$$\overline{a^{n}} = \int_{-\infty}^{\infty} a^{n} P_{a} da$$
$$\overline{(a - \overline{a})^{n}} = \int_{-\infty}^{\infty} (a - \overline{a})^{n} P_{a} dx$$

 $-\infty$

• central moments: \rightarrow n=0: norm \rightarrow n=1:=0 \rightarrow n=2: variance \rightarrow n=3: skewness

Normal Distribution

$$P_a = \frac{1}{\sqrt{2\pi\sigma_a}} \exp\left\{-\frac{1}{2} \frac{(a-\overline{a})^2}{\sigma_a^2}\right\}$$

Moments of the normal distribution

- \rightarrow skewness = 0
- \rightarrow kurtosis = 3
- \rightarrow all higher moments = 0

Tools

1. Stationarity

Stationarity

Consider: time correlation of a variable with itself

$$a(t) \cdot a(t') = C_a(\tau, T)$$

$$\tau$$
 = t - t'
T= abs. time

Stationary turbulence

stationary turbulence
$$\leftrightarrow a(t) \cdot a(t') =: C_a(\tau)$$

- \rightarrow C_a independent of T
- $\rightarrow\,$ for all τ
- \rightarrow in particular also for $\tau = 0$
- $\Rightarrow a(t) \cdot a(t) =: C_a(0) =$ variance

Stationary turbulence

 \rightarrow variance independent of T

order of stationarity:

ightarrow correlation of the N-th order

$$a(t_1) \cdot a(t_2) \cdot a(t_3) \cdots a(t_N) = C_a^N(\tau_1, \tau_2, \tau_3, \dots, \tau_N)$$

- \rightarrow independent of T
- ightarrow in particular: for au = 0

ALL moments of the distribution independent of T in practice:

average, variance independent of T 'enough'

Quasi - stationarity

- turbulence is never really stationary
 → turbulence is *dissipative*
- 2 time scales
- T_f = 'forcing time scale': external processes \rightarrow can be several hours

Quasi - stationarity

Turbulence is never really stationary
 --> Turbulence is dissipative

2 time scales

- T_f = 'forcing time scale': external processes
- T_m = change of mean characteristics \rightarrow how long until 'mean profile' has adapted to (external) change

Quasi-stationarity:

$$T_m \ll T_f$$

Higgins et al.2019: Ensemble-Averaging Resolves Rapid Atmospheric Response to the 2017 Total Solar Eclipse

https://www.frontiersin.org/articles/10.3389/feart.2019.00 198/full

Example: Solar eclipse

Example: Solar eclipse

Example: Solar eclipse

Tools

1. Stationarity

2. Homogeneity

ightarrow analogue of stationarity in space

$$a(x) \cdot a(x') =: C_a(\Delta x, \vec{r})$$

 $\vec{r} = \text{position vector}$

 \rightarrow homogeneous:

$$a(x) \cdot a(x') = C_a(\Delta x)$$

ightarrow for all higher moments

 \rightarrow in particular Δ x=0

independent of \vec{r}

Homogeneity Stationarity

homogeneity corresponds to stationarity in space (horiz) \rightarrow if (sfc) forcing = const.

sbru

Tools

- 1. Stationarity
- 2. Homogeneity
- 3. Averaging

Averaging

• goal (e.g. of a measurement):

Averaging

- goal (e.g. of a measurement):
 → not: 'value' for this time at this place
 - → would like: to learn something about the physical processes, which produce such a time series
 - \rightarrow to this time series, there is one 1m aside / '17 minutes' earlier, later, ...
 - → the random process (producing *this* time series) both spatially as well as in the time domain *theoretically goes to infinity*

Ensemble averages

Ensemble = all possible realizations that can appear for a stationary process

 \rightarrow average over all realizations:

$$\overline{a}^e = \frac{1}{N} \sum_{i=1}^N a_i(\vec{x},t) \text{ for } a = a(\vec{x},t)$$

atmosphere: $N = \infty$

Ergodic Hypothesis

E.H: under certain conditions:

$$\overline{a}^{x} \to \overline{a}^{e}$$
$$\overline{a}^{t} \to \overline{a}^{e}$$

Wyngaard (2010):

'The property that the time average of a stationary random variable and the space average of a homogeneous random variable converge to the ensemble average is called ergodicity'.

Ergodicity will always (implicitly) be assumed in real applications

Averaging

Spatial average:

 $\overline{a}^{x} = \frac{1}{S} \iint_{S} a(\vec{x}, t) ds$ \rightarrow want to know (structure of the turbulence) \rightarrow difficult to obtain (lots of instruments!)

 \rightarrow if horizontally homogeneous: one characteristic profile!

HATS field campaign \rightarrow Horst et al 2004 \rightarrow small-scale turbulence

Averaging

→ if horizontally homogeneous: one characteristic profile!

Spatial Averaging

Fiber Optic Distributed Sensing (FODS)

Spatially Integrated Measurements

Averaging

spatial average:

$$\overline{a}^x = \frac{1}{S} \iint_{S} a(\overline{x}, t) ds$$

time average:

$$\overline{a}^t = \frac{1}{T} \int_{t_1}^{t_1+T} a(\vec{x},t) dt$$

 \rightarrow result of a measurement:

 \rightarrow often: determine

often: determine
$$\overline{a}^t \longrightarrow \overline{a}^e$$
 resp. $\overline{a}^x \longrightarrow$ Ergodic Hypothesis!

Averaging Rules

Table 3.1: Useful rules for averaging

A, B are variables, c is a constant

$$\overline{C} = C$$

$$\left(C \cdot A\right) = C \cdot \overline{A}$$

$$\left(\overline{A}\right) = \overline{A}$$

$$\left(\overline{\overline{A} \cdot B}\right) = \overline{A} \cdot \overline{B}$$

$$\left(\overline{A \cdot B}\right) \neq \overline{A} \cdot \overline{B}$$

 $\overline{\left(A+B\right)} = \overline{A} + \overline{B}$ $\overline{\left(\frac{\partial A}{\partial x}\right)} = \frac{\partial \overline{A}}{\partial x}$

An average behaves like a constant

The average of a product is not, in general, the product of the averages

This is an important property and derives from the Leibnitz theorem.

Intermediate Summary

• Pdf's

- \rightarrow probability density function to describe the variables
- \rightarrow fully characterized through its *moments*
- stationarity
 - ightarrow all moments do not change with time
 - ightarrow in practice: up to second moments enough
- homogeneity
 - ightarrow is stationarity in space
- averaging
 - \rightarrow would need: average over all possible realizations
 - \rightarrow ensemble average
 - \rightarrow certain conditions: time/space average \rightarrow ens. av.

Tools

- 1. Stationarity
- 2. Homogeneity
- 3. Averaging
- 4. Taylor Hypothesis

• Mostly: have time series (one instrument, i.e. place)

 Mostly: have time series (one instrument, i.e. place)
 → want information on the *structure of turbulence*

More generally:

 \rightarrow how can I observe 'an eddy'? \rightarrow would need 1000's of instruments

Hypothesis:

The turbulence can be assumed to be **frozen** during the time it travels across the point of observation.

 \rightarrow Taylor's Frozen Turbulence Hypothesis \rightarrow Geoffrey I. Taylor, 1938

Hypothesis:

The turbulence can be assumed to be **frozen** during the time it travels across the point of observation.

→ applies, if:
$$T_f >> L_e / \overline{u}$$

→ in practice:

$$\sigma_u / \overline{u} < 0.5$$

 \rightarrow process is stationary

 \rightarrow T_f = forcing time scale

$$\rightarrow L_{e}$$
= characteristic length

$$\rightarrow$$
 u = average wind speed

 $ightarrow \sigma_{\scriptscriptstyle u}~$ = measure of activity of turbulence

$$\rightarrow \overline{u}$$
 = measure of advection

mathematically: $D\zeta / Dt = 0$ $\frac{D\zeta}{Dt} = \frac{\partial\zeta}{\partial t} + \frac{\partial\zeta}{\partial x}\frac{\partial x}{\partial t} + \frac{\partial\zeta}{\partial y}\frac{\partial y}{\partial t} + \frac{\partial\zeta}{\partial z}\frac{\partial z}{\partial t} = 0$ $u \qquad v \qquad w \qquad (frozen')$ $\frac{\partial\zeta}{\partial t} = -\vec{v} \cdot \nabla\zeta \qquad (conservative flow field')$

→ measured change in time corresponds to advected spatial structure

Reynolds Decomposition

averaging

- \rightarrow is it now turbulence?
- \rightarrow or average flow?
- ightarrow averaging over what time?
- → where does turbulence remain after averaging?

Reynolds Decomposition

fluctuations with different periodicity
 → seasonal cycle, daily cycle, fast fluctuations

- spectral distribution
 - ightarrow how much 'power' in which periodicity?
 - \rightarrow (see later, chapter 7)

(Idealized) Energy Spectra

Reynolds Decomposition

pragmatic choice:

 → fluctuations faster than about 1h: turbulence
 → longer: average flow

a = time averageactually: ensemble average

Reynolds Decomposition

in practice:

- measure a(t): time resolution big enough (how to choose it?)
- compute: a
- for each averaging period
- from there: a'(t): for each measurement (20Hz)

Computation Rules for Reynolds Decomposition

Table 3.2: Calcu	ulus for Reynolds Decomposition
<u>a</u> and b are variables, for which: $a = \overline{a} + a'$; $b = \overline{b} + b'$	
$\overline{a'} = 0$	By definition
$\overline{(a)} = \overline{(\overline{a} + a')} = \overline{a}$	By definition and 1)
$\overline{\left(\overline{b}\cdot a' ight)}=\overline{b}\cdot\overline{a}'=0$	The average of a product involving a primed variable vanishes
$\overline{(a \cdot b)} = \overline{(\overline{a} + a') \cdot (\overline{b} + b')}$ $= \overline{a} \cdot \overline{b} + \overline{a'b'}$	The covariance is not necessarily zero
$\overline{a^2} = \overline{a}^2 + \overline{a'^2}$	The second term on the <u>rhs</u> corresponds to the Second central moment, i.e. the variance
	and <i>b</i> are variable $\overline{a'} = 0$ $\overline{(a)} = \overline{(\overline{a} + a')} = \overline{a}$ $\overline{(\overline{b} \cdot a')} = \overline{b} \cdot \overline{a'} = 0$ $\overline{(a \cdot b)} = \overline{(\overline{a} + a')} \cdot \overline{(\overline{b} + b')}$ $= \overline{a} \cdot \overline{b} + \overline{a'b'}$

- \rightarrow opposite behavior...
- \rightarrow on **average** (here):

 \rightarrow on average (here):

$\rightarrow a'b' > 0$

- ightarrow a,b poorly correlated
- → a'b' ≈ 0

- physical meaning
 → turbulent transport
- in general:

 \rightarrow consider: physical description of transport

Description of Transport

let: X = additive quantity ('countable')

then
$$X = \iiint_V \rho \chi dV$$
 [X] = x

$$\chi$$
 = specific quantity $[\chi] = x/kg$

Description of Transport

Description of Transport

 \rightarrow infinitesimal:

$$\vec{F}_{\chi} = \rho \chi \vec{v}$$

 \rightarrow Flux = ρ density of fluid

- x specific transported quantity
- v transport velocity
- \rightarrow co-variances: **a'b'** \rightarrow often: a or b is a velocity component
- → for example: co-variance: a'w'→ transport of 'a' in vertical direction

Covariances = Turbulent Transport

• these co-variances will be important:

 $w'\theta', w'q', u'w', (v'w')$

- with: w' and a scalar (θ', q'), resp. w' and u' → expresses transport of scalar quantities in vertical direction
- each instantaneous value, e.g. :
 - \rightarrow instantaneous flux (transport) $W'\theta'$

 \rightarrow average: random or systematic, e.g.:

 $w'\theta'$

BLM | Innsbruck | Stiperski | 2020

universität innsbruck

BLM | Innsbruck | Stiperski | 2020

Turbulent Fluxes

Quadrants

heat flux

Quadrants

Upward kinematic momentum flux

 \rightarrow investigate type of transport

Quadrant analysis: Momentum Transport

 $u'w'_{tot} = 0.6u'w'_{tot} + 0.6u'w'_{tot} - 0.1u'w'_{tot} - 0.1u'w'_{tot}$

Quadrant analysis: Momentum Transport

universität innsbruck

BLM | Innsbruck | Stiperski | 2020