

BOUNDARY LAYER METEOROLOGY

Prof. Ivana Stiperski, Dr. Manuela Lehner Department of Atmospheric and Cryospheric Sciences

Chapter 3

Statistical treatment of turbulence

Content

3.1. Averaging, Stationarity and Homogeneity

- 3.2. Taylor Hypothesis
- 3.3. Reynolds Decomposition
- 3.4. Co-variances and their Physical Meaning
- 3.5. Other Turbulence variables

Why do we use statistics when dealing with turbulence?

Motivation

- irregular, different each second...
- cannot / do not want: describe each trajectory
- statistical treatment!

Distributions

Represent measurements depending on their likelihood

number

Distributions

 \rightarrow Likelihood presented through: Probability Density Function(PDF, P)

Distributions - Variance

Distributions - Skewness

\rightarrow Third moment: Skewness

Distributions - Skewness

- \rightarrow Third moment: Skewness
- symmetric?
- e.g., vertical velocity in CBL

CBL – skewness w

- \rightarrow single 'thermals' with strong positive w
- \rightarrow occupy about 30-40% of surface
- \rightarrow median (w) slightly negative

Distributions - Kurtosis

\rightarrow Fourth moment: Kurtosis

- Frequency of extremes outliers
- (flatness of a distribution)

Probability density function

- completely characterized by its moments
- average:
- generally:

$$
\overline{a} = \int_{-\infty}^{\infty} aP_a da
$$

$$
\overline{f(a)} = \int_{-\infty}^{\infty} f(a)P_a da
$$

∞

- moments:
-

$$
\frac{a^n}{a^n} = \int_{-\infty}^{\infty} a^n P_a da
$$

$$
\overline{(a-\overline{a})^n}=\int\limits_{-\infty}^{\infty}(a-\overline{a})^nP_a dx
$$

 \rightarrow n=0: norm \rightarrow n=1: =0 \rightarrow n=2: variance \rightarrow n=3: skewness • central moments:

Normal Distribution

$$
P_a = \frac{1}{\sqrt{2\pi}\sigma_a} \exp\left\{-\frac{1}{2}\frac{(a-\overline{a})^2}{\sigma_a^2}\right\}
$$

Moments of the normal distribution

- \rightarrow skewness = 0
	- \rightarrow kurtosis = 3
- \rightarrow all higher moments = 0

Tools

1. Stationarity

Stationarity

Consider: time correlation of a variable with itself

$$
a(t) \cdot a(t') = C_a(\tau, T)
$$

$$
\tau = t - t'
$$

T = abs. time

Auto-covariance function

Stationary turbulence

stationary turbulence
$$
\longrightarrow
$$
 $a(t) \cdot a(t') =: C_a(\tau)$

- $\ddot{=}$ \rightarrow C_a independent of T
- \rightarrow for all τ
- \rightarrow in particular also for $\tau = 0$
- \Rightarrow *a*(*t*) \cdot *a*(*t*)=:*C*_{*a*}(0) = variance

Stationary turbulence

 \rightarrow variance independent of T

order of stationarity:

 \rightarrow correlation of the N-th order

$$
a(t_1)\cdot a(t_2)\cdot a(t_3)\cdots a(t_N)=:C_a^N(\tau_1,\tau_2,\tau_3,\ldots\tau_N)
$$

- \rightarrow independent of T
- \rightarrow in particular: for $\tau = 0$

ALL moments of the distribution independent of T in practice:

average, variance independent of T 'enough'

Quasi - stationarity

- turbulence is never really stationary → turbulence is *dissipative*
- 2 time scales
- T_f = 'forcing time scale': external processes \rightarrow can be several hours

Quasi - stationarity

• Turbulence is never really stationary --> Turbulence is *dissipative*

2 time scales

- T_f = 'forcing time scale': external processes
- T_m = change of mean characteristics \rightarrow how long until 'mean profile' has adapted to (external) change

Quasi-stationarity:

$$
T_m << T_f
$$

Higgins et al.2019: Ensemble-Averaging Resolves Rapid Atmospheric Response to the 2017 Total Solar Eclipse

https://www.frontiersin.org/articles/10.3389/feart.2019.00 198/full

Example: Solar eclipse

Example: Solar eclipse

Example: Solar eclipse

Tools

1. Stationarity

2. Homogeneity

 \rightarrow analogue of stationarity in space

$$
\overline{a(x) \cdot a(x')} =: C_a(\Delta x, \vec{r}) \qquad \frac{\Delta x = x - x'}{\vec{r}} = \text{position vector}
$$

 \rightarrow homogeneous:

$$
a(x) \cdot a(x') =: C_a(\Delta x)
$$

 \rightarrow for all higher moments

 \rightarrow in particular $\Delta x=0$

 \overrightarrow{r} independent of \overrightarrow{r}

$Homogeneity \leftrightarrow$ Stationarity

homogeneity corresponds to stationarity in space (horiz) \rightarrow if (sfc) forcing = const.

isbrucl

Tools

- 1. Stationarity
- 2. Homogeneity
- 3. Averaging

Averaging

• goal (e.g. of a measurement):

Averaging

- goal (e.g. of a measurement): \rightarrow not: 'value' for this time at this place
	- \rightarrow would like: to learn something about the physical processes, which produce such a time series
	- \rightarrow to this time series, there is one 1m aside / '17 minutes' earlier, later, ...
	- \rightarrow the random process (producing *this* time series) both spatially as well as in the time domain *theoretically goes to infinity*

Ensemble averages

Ensemble = all possible realizations that can appear for a stationary process

 \rightarrow average over all realizations:

$$
\overline{a}^e = \frac{1}{N} \sum_{i=1}^N a_i(\vec{x},t) \quad \text{for} \quad a = a(\vec{x},t)
$$

atmosphere: $N = \infty$

Ergodic Hypothesis

E.H: under certain conditions:

$$
\overline{a}^x \rightarrow \overline{a}^e
$$

$$
\overline{a}^t \rightarrow \overline{a}^e
$$

Wyngaard (2010):

The property that the time average of a stationary random variable and the space average of a homogeneous random variable converge to the ensemble average is called ergodicity'.

> Ergodicity will always (implicitly) be assumed in real applications

Averaging

Spatial average: $\overline{a}^x = \frac{1}{6} \iint$

 $\ddot{}$ \rightarrow want to know (structure of the turbulence) \rightarrow difficult to obtain (lots of instruments!)

 $\overline{a}^x =$

1

a(

 \rightarrow

x ,*t*)*ds*

S

S

 \rightarrow if horizontally homogeneous: one characteristic profile!

HATS field campaign \rightarrow Horst et al 2004 \rightarrow small-scale turbulence

Averaging

\rightarrow if horizontally homogeneous: one characteristic profile!

Spatial Averaging

Fiber Optic Distributed Sensing (FODS)

Spatially Integrated Measurements

Averaging

spatial average:

$$
\overline{a}^x = \frac{1}{S} \iint_S a(\vec{x}, t) ds
$$

time average:

$$
\overline{a}^t = \frac{1}{T} \int\limits_{t_1}^{t_1+T} a(\vec{x},t) dt
$$

 \rightarrow result of a measurement:

 \rightarrow often: determine

 \overline{a}^t $\rightarrow \bar{a}^e$ resp. \bar{a}^x \rightarrow Ergodic Hypothesis!

Averaging Rules

Table 3.1: Useful rules for averaging

A, B are variables, *c* is a constant

$$
\overline{c} = c
$$
\n
$$
(c \cdot A) = c \cdot \overline{A}
$$
\n
$$
(\overline{A}) = \overline{A}
$$
\n
$$
(\overline{A \cdot B}) = \overline{A} \cdot \overline{B}
$$
\n
$$
(\overline{A \cdot B}) = \overline{A} \cdot \overline{B}
$$
\n
$$
(\overline{A \cdot B}) = \overline{A} + \overline{B}
$$
\nThe average of a product is not, in general, the product of the averages\n
$$
(\overline{A + B}) = \overline{A} + \overline{B}
$$
\nThis is an important property and derives from the Leibnitz theorem.

Intermediate Summary

• Pdf's

- \rightarrow probability density function to describe the variables
- → fully characterized through its *moments*
- stationarity
	- \rightarrow all moments do not change with time
	- \rightarrow in practice: up to second moments enough
- homogeneity
	- \rightarrow is stationarity in space
- averaging
	- \rightarrow would need: average over all possible realizations
	- \rightarrow ensemble average
	- \rightarrow certain conditions: time/space average \rightarrow ens. av.

Tools

- 1. Stationarity
- 2. Homogeneity
- 3. Averaging
- 4. Taylor Hypothesis

• Mostly: have time series (one instrument, i.e. place)

• Mostly: have time series (one instrument, i.e. place) \rightarrow want information on the *structure of turbulence*

More generally:

 \rightarrow how can I observe 'an eddy'? \rightarrow would need 1000's of instruments

Hypothesis:

The turbulence can be assumed to be frozen during the time it travels across the point of observation.

→ *Taylor's Frozen Turbulence Hypothesis → Geoffrey I. Taylor, 1938*

Hypothesis:

The turbulence can be assumed to be frozen during the time it travels across the point of observation.

$$
\Rightarrow \text{applies, if:}
$$
\n
$$
T_f \gg L_e / \overline{u}
$$
\n
$$
\Rightarrow \text{ in practice:}
$$
\n
$$
\sigma_u / \overline{u} < 0.5
$$

- \rightarrow process is stationary
- \rightarrow T_f = forcing time scale
- \rightarrow \overline{L}_{e} = characteristic length
- \rightarrow u = average wind speed
- $\rightarrow \sigma_{\mu}$ = measure of activity of turbulence *u*

$$
\rightarrow \bar{u}
$$
 = measure of advection

mathematically: *D*ζ / *Dt* = 0 *D*ζ *Dt* = $\partial \zeta$ ∂*t* + $\partial \zeta$ ∂ *x* ∂ *x* ∂*t* + $\partial \zeta$ ∂ *y* ∂ *y* ∂*t* + $\partial \zeta$ ∂ *z* ∂ *z* ∂*t* $= 0$ u v w 'frozen' 'conservative flow field' $\partial \zeta$ $\overline{\partial t}$ $=-\vec{v}\cdot\nabla\zeta$

 \rightarrow measured change in time corresponds to advected spatial structure

Reynolds Decomposition

• averaging

- \rightarrow is it now turbulence?
- \rightarrow or average flow?
- \rightarrow averaging over what time?
- \rightarrow where does turbulence remain after averaging?

Reynolds Decomposition

• fluctuations with different periodicity \rightarrow seasonal cycle, daily cycle, fast fluctuations

- spectral distribution
	- \rightarrow how much 'power' in which periodicity?
	- \rightarrow (see later, chapter 7)

(Idealized) Energy Spectra

Reynolds Decomposition

• pragmatic choice: \rightarrow fluctuations faster than about 1h: turbulence \rightarrow longer: average flow

 \overline{a} = time average actually: ensemble average

Reynolds Decomposition

in practice:

- measure a(t): time resolution big enough (how to choose it?)
- compute: \overline{a}
- for each averaging period
- from there: a'(t): for each measurement (20Hz)

Computation Rules for Reynolds Decomposition

- \rightarrow opposite behavior...
- \rightarrow on average (here):

- \rightarrow similar behavior....
- \rightarrow on average (here):

\rightarrow *a*'*b*' > 0

 \rightarrow a,b poorly correlated

$$
\rightarrow a'b' \approx 0
$$

- physical meaning \rightarrow turbulent transport
- in general:

 \rightarrow consider: physical description of transport

Description of Transport

 $let: X = additive quantity (countable')$

then
$$
X = \iiint_V \rho \chi dV
$$
 [X] = x

$$
\chi = \text{specific quantity} \qquad [\chi] = x/kg
$$

Description of Transport

Description of Transport

 \rightarrow infinitesimal:

$$
\vec{F}_\chi = \rho \chi \vec{v}
$$

 \rightarrow Flux = ρ density of fluid

- $\frac{5}{1}$ x specific transported quantity
- v transport velocity
- → co-variances: *a*'*b*' \rightarrow often: a or b is a velocity component
- $\frac{1}{2}$ \rightarrow for example: co-variance: \rightarrow transport of 'a' in vertical direction *a*'w'

Covariances = Turbulent Transport

• these co-variances will be important:

w′θ′ , *w*′*q*′ , *u*′*w*′ , (*v*′*w*′)

- with: w' and a scalar (θ' , q'), resp. w' and u' \rightarrow expresses transport of scalar quantities in vertical direction
- each instantaneous value, e.g. :
	- \rightarrow instantaneous flux (transport) *w*′θ′

 \rightarrow average: random or systematic, e.g.:

w′θ′

BLM | Innsbruck I Stiperski I 2020

universität
innsbruck

BLM | Innsbruck I Stiperski I 2020

Turbulent Fluxes

Quadrants

heat flux

Quadrants

Upward kinematic momentum flux

 \rightarrow investigate type of transport

Quadrant analysis: Momentum Transport

u^{*w*}_{*tot*} = 0.6*u*^{*w*}_{*tot*} + 0.6*u*^{*w*}_{*tot*} − 0.1*u*^{*w*}_{*tot*} − 0.1*u*^{*w*}_{*tot*}

Quadrant analysis: Momentum Transport

universität
innsbruck

BLM | Innsbruck | Stiperski | 2020