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6 Turbulent Kinetic Energy and Dynamical Stability 

6.1 TKE-Equation 
In the foregoing chapter an equation has been derived for the (summed) 
velocity variances that is repeated here for convenience in its flux form 
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The last three terms on the rhs of (5.34) can be simplified as follows. Inserting 
the definition of     

€ 

εij3 (see definition in the note to Table 5.1) readily shows that 
the Coriolis term vanishes.  
For the pressure term we note that  
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of which the last term on the rhs vanishes due to the summation (continuity 
equation). In flux form the second last term on the rhs of (5.34) therefore 
reads 
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For the last term on the rhs of (5.34) we note that  
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Therefore 
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The first term on the rhs of (6.4) is on the order of   

€ 

10−10  while the second 
term is O(  

€ 

10−3 ). The rate of dissipation of TKE is therefore defined as 
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Recalling the definition of TKE (eq. 3.25), and with the above simplifications 
(5.34) yields a conservation equation for TKE per unit masss,   

€ 

e: 
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The terms on the lhs (of (6.6) are the local temporal change and the advection 
term, respectively. On the rhs we have the shear production, the turbulent 
transport of TKE, the buoyancy term, the pressure correlation term and the 
dissipation rate of TKE.  
Clearly, TKE is strongly dependent on the stability of the flow through the 
buoyancy term. Under convective (daytime) conditions the turbulent heat flux 
is positive     

€ 

u'3 θ ' > 0 and thus the buoyancy term is a production term. In 
contrary, under stable conditions (night time) this term becomes a sink and 
acts to damp TKE. Therefore, even under horizontally homogeneous 
conditions TKE exhibits a strong daily cycle (Fig. 6.1) and the local temporal 
change of TKE vanishes only during carefully selected periods of time. 
Shear production of TKE 
The first term on the rhs of (6.6) is always positive and thus a production term. 
This can easily be seen by recalling that – for example in the vertical direction 
– the shear stress is directed towards the surface (    

€ 

u'1u'3 < 0) and is the result 
of friction, which a the same time leads to a positive gradient of the mean 
wind speed (    

€ 

∂u 1 ∂x3 > 0 ). Or in more general terms, in a Newtonian fluid the 
shear stress can be expressed as proportional to the rate of deformation. 
Therefore, all the individual products making up this term are negative and 
with minus sign we have a production term. Clearly, at least close to the 
surface the vertical shear stress makes up the dominant contribution to this 
term. 
The shear production term describes the interaction of the turbulence with the 
mean flow. If the TKE equation has the form 
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the corresponding conservation equation for the mean kinetic energy (
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thus showing that the shear production of TKE goes at the expense of mean 
kinetic energy of the flow. 
Turbulent transport of TKE 
First of all we note that – similar as with the second moments in the 
conservation equation for the mean variables – it is the flux divergence that 
enters the TKE equation. Assuming horizontally homogeneous conditions for 
the moment we further note that     
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stable/neutral conditions the third order moments and especially the 
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skewness of the vertical velocity component are rather insignificant due to the 
near-normal distribution of the velocity fluctuations and correspondingly small 
is the turbulent transport term. In convective conditions, however, the non-
local mixing through large eddies changes the situation. Figure 4.8 shows the 
profile of the skewness of the vertical velocity component under typical 
convective stratification. Figure 1.8 has already paved the terrain for the 
apprehension of large eddies being responsible relatively strong updrafts 
(thermals) over a limited area and weaker compensating subsidence, thus 
leading to a skewed distribution of the vertical velocity component.  

 
Figure 6.1 Time variation of TKE as measured at three different levels on tower 

(lines) and from a low flying light research aircraft (circled symbols). 
The numbers in the abscissa indicate the day-of-year in 1999 (from 
Weigel and Rotach 2004).  
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From Fig. 4.8 we see that close to the surface (essentially in the lower third or 
so of the CBL)     

€ 

−∂u'3
3 ∂x3 < 0 and hence turbulent transport of TKE constitutes 

a loss term. This is clear since the dominant (shear) production occurs close 
to the surface and through the transport term the upper parts of the boundary 
layer gain TKE.  Figure 6.2 shows that also horizontal velocity variance is 
transported in a similar fashion away from the surface – and also from the top 
of the CBL downwards - through the transport term. 
 

 
Figure 6.2 Vertical profiles of the mixed third moments in CBL’s (shaded 

ranges). From Stull (1988). 
 
The pressure correlation term is the least known of all contributions to the 
TKE budget, mainly due to observational problems. It is generally considered 
to be small and therefore often treated as a residual term in TKE budget 
studies. 
Dissipation of TKE 
The rate of dissipation of TKE is due to its definition (eq. 6.5) and meaning 
always negative. Close to the surface it is naturally at maximum (Fig. 6.3) due 
to the dominant shear production there. The dissipation of TKE eventually 
leads to kinetic energy of the flow being transformed into heat. Even close to 
the surface, where it is at maximum, this heat input is negligibly small as 
compared to all the other terms in the energy budget equation and therefore 
usually (and safely) neglected. 
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Figure 6.3 The near neutral profile for the dissipation rate of TKE, solid line, 

compared with measurements. Data: * Grant (1992), o Brost et al 
(1982). The dashed line represents a surface layer parameterization 
after Vogel and Frenzen (1992). From Rotach et al (1996). 

Idealised profiles 
Under ideally neutral, horizontal homogeneous and steady state conditions 
the shear production of TKE is balanced by dissipation (Fig. 6.4). Clearly, 
such conditions are difficult to meet in real flows and often other processes 
contribute to the TKE budget. The four dominating terms in near steady-state 
daytime ABL’s are summarised in Fig. 6.5. Again it can be seen that close to 
the surface shear production and dissipation dominate and an important 
source of TKE in the central part of the boundary layer is turbulent transport 
away from the surface. The buoyancy term essentially follows the profile of 
the turbulent heat flux with a maximum at the surface and a minimum (loss of 
TKE due to the entrainment process) at the top. After sunset the buoyancy 
term also becomes a sink (Fig. 6.6, left panel) and shear production is way 
too weak to maintain the TKE levels of the day. Therefore, after some hours 
TKE levels are largely reduced and so are the budget terms (Fig. 6.6, right 
panel). 
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Figure 6.4 Profiles of budget terms in the TKE equation over an urban surface in a 

wind tunnel. The dashed lines indicate (from the bottom upwards) the 
mean building height, the height of the roughness sublayer (section 
8.2) and the height of the inertial sublayer. From Feddersen (2005). 
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Figure 6.5 Vertical profiles of budget terms in the TKE equation under convective 
conditions (shaded areas give spread). From Stull (1988). 

 
Figure 6.6 Modelled budget terms of the TKE equation during ‘night 33-34’ in the 

Wangara experiment. Left panel at 6 pm (day 33) and right panel at 2 
am (day 34). From Stull (1988). 

6.2 Stability Measures 
Until now we have used stability as a discriminating criterion for different types 
of boundary layer states. In this we have always silently assumed that with 
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‘stability’ the static stability, i.e. the gradient of the potential temperature was 
referred to. However, the stability of a turbulent flow not only depends on the 
thermal stratification but also on the shear production of TKE, which is even 
dominating in various regions of the ABL. In loos terms we may say that a 
turbulent flow is very unstable if shear production is supported by additional 
buoyancy production, is near-neutral if the buoyancy term is small and finally 
is stable if buoyancy acts to damp TKE. It seems therefore appropriate to 
define a dynamical stability measure, which takes into account not only the 
sign of the buoyancy production/damping term but also the strength of the 
shear production. 

6.2.1 The Flux Richardson number 
One of the pioneer’s of atmospheric turbulence research, L.F. Richardson, 
has been the first to introduce a stability measure based on the TKE budget 
equation (6.6). His simplifying (idealising) assumptions were to consider a 
quasi-stationary (    

€ 

∂ /∂t = 0), horizontally homogeneous (    

€ 

∂ /∂x1 = ∂ /∂x2 = 0) 
flow without subsidence (    

€ 

u 3 = 0) and a coordinate system aligned with the 
mean wind (    

€ 

u 2 = 0). With this eq. (6.6) becomes 
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Based on the this idealized TKE budget equation Richardson identified the 
shear production and the buoyancy terms as the dominating terms, based on 
which he defined a dynamical stability measure that is since then known as 
the Flux Richardson Number,   

€ 

Rf : 
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Even if the assumption of neglecting especially the dissipation term may not 
prove particularly good (cf. Fig. 5.4)   

€ 

Rf  has become an essential variable in 
defining the turbulence state of atmospheric flows. Its most obvious property 
is that     

€ 

Rf < 0 for unstable conditions,     

€ 

Rf = 0 for neutral flows and     

€ 

Rf > 0 in 
stable conditions. If both shear production and buoyancy contribute to TKE 
production there is no theoretical limitation to   

€ 

Rf  (at least not in the idealised 
assumption of its derivation) although it is hardly observed to become smaller 
than –10. On the stable side we readily observe that production of TKE is 
larger than damping if     

€ 

Rf < +1. For larger Richardson numbers, no turbulence 
can be maintained even if shear production should exist, simply because it is 
readily damped away by the stratification. For     

€ 

0 < Rf < 1 the flow is statically 
stable (    

€ 

∂θ /∂x3 > 0 ) and dynamically unstable in the sense that turbulence can 
exist. Still, this consideration has neglected the dissipation of TKE, which 
certainly (and substantially) will contribute to the suppression of turbulence. 
Equating the total production (still only shear production) with the ‘total’ 
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suppression (buoyancy plus dissipation terms) yields an expression for a 
‘critical’ state, in which turbulence can ‘just’ be maintained: 
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Equation (6.11) can be expressed in terms of   

€ 

Rf  to yield a ‘critical’ 
Richardson number above which damping of TKE is dominating over 
production  
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The sign of the second term on the rhs of (6.12) is always negative thus 
indicating that somewhere between     

€ 

0 < Rf < 1 this critical state is reached 
(see below, 6.2.2). Beyond this point, turbulence occurs only sporadically, i.e. 
it may be produced locally and is ‘dissipated away’ quite quickly. In terms of 
scaling regimes (Fig. 4.4) this state of the stable boundary layer is referred to 
as intermittency.  

6.2.2 The Gradient Richardson number 
The diagnostics of the dynamic stability using the Flux Richardson number 
requires the knowledge of the turbulent fluxes (eq. 6.10), which are often not 
available (e.g., in a numerical model with a first order turbulence closure). 
Also, as a measure for the transition between laminar and turbulent states of 
a flow, a measure might be desirable that is non-zero in both1. Therefore as 
an approximation, K-Theory (Section 5.2.1) is used to define the so-called 
Gradient Richardson Number,   

€ 

Ri . Thereby the simplifying assumption is 
made that the exchange coefficients for momentum,   

€ 

Km, and for sensible 
heat   

€ 

KH  are equal, thus 
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Clearly,   

€ 

Ri  is easier to determine than   

€ 

Rf  but it still has the ‘theoretical‘ 
foundation of employing in an idealised fashion the TKE budget equation for 
its definition. It has the same properties in terms of sign as the Flux 
Richardson number (positive for statically stable and negative for statically 
unstable conditions). The flux and Gradient Richardson numbers are related 
through 

                                            
1 Note that the turbulent fluxes are zero in laminar flows and hence is the Flux Richardson 

Number 



- 10 - 
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Rf = Ri KH
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In the literature a critical Richardson number (cf. 6.12) is always given in 
terms of   

€ 

Ri  rather than   

€ 

Rf . Observational evidence and some further 
theoretical considerations (Nieuwstadt, 1984) indicate that  

    

€ 

Ric ≈ 0.25, (6.15) 

i.e. at a value substantially smaller than one the action of buoyancy and 
dissipation make it impossible to maintain a fully turbulent state. 

6.2.3 The Bulk Richardson number 
If the evaluation of gradients is still beyond the possibilities an even simpler 
approach to dynamic stability is the Bulk Richardson Number,   

€ 

RiB . In this 
further simplification the gradients are replaced by differences, and hence 
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. (6.16) 

The Bulk Richardson number is often used as an approximation for the entire 
boundary layer and hence the differences are taken between the ABL top and 
the surface (in this case     

€ 

Δu 1 reduces to     

€ 

u 1 because the mean speed vanishes 
at the surface). Clearly   

€ 

RiB  has the advantage of simplicity but the 
linearization implied in the transition between   

€ 

Ri  and   

€ 

RiB  is not generally 
based on solid ground. 

6.2.4 Stability measure in the Surface Layer 
In Chapter 4 the non-dimensional quantity     

€ 

z / L, where   

€ 

L is the Obukhov 
length, has been found to be the ‘one and only’ dimensionless group to 
describe turbulence variables in the Surface Layer. This result was achieved 
using similarity theory. We may use this result to expressing the simplified 
TKE budget (6.9) in terms of SL variables and in non-dimensional form. For 
this we multiply each term by     

€ 

kx3 /u*
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surface values (    
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. (6.17) 

The chosen scaling exactly2 corresponds to Richardson’s approach in that the 
former buoyancy term now corresponds to     

€ 

z / L and expresses the ratio 
between buoyancy production/damping and shear production of TKE. 
Monin-Obukhov similarity theory then predicts that all the ‘Phi functions’ in 
(6.17) be a function of     

€ 

z / L alone – what has been shown to be a good 

                                            
2 With the additional von Kàrmàn constant and the constraint of surface fluxes. 
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prediction for, e.g.   

€ 

Φm (Fig. 4.3) and a useful approximation for 

€ 

Φε  even 
outside the SL (Fig. 6.3) under near-neutral stratification. Figure 6.7 shows 
the dominating terms (with the transport and pressure terms as residual) over 
a horizontally homogeneous snow surface on the Greenland ice sheet. 
Neglecting the turbulent transport and pressure correlation terms for a 
moment we find from this analysis that the sum ‘shear production minus 
dissipation’ in its non-dimensional form is linearly related to     

€ 

z / L, an 
observation that is often confirmed to approximately hold in the SL.  

 

 
Fig. 6.7 Terms of the non-dimensional TKE budget equation in the SL over a 

horizontally homogeneous snow-covered surface on the Greenland ice 
sheet. The dotted line corresponds to (4.24), the solid line is a 
parameterization (stable stratification) for the non-dimensional 
dissipation rate, the dashed line is the 1:1 line for the buoyancy term. 
The triangles denote the residuum term. Symbols as bins over stability 
ranges. From Forrer (1999). 

Finally, using the non-dimensional wind shear (eq. 4.14) and the non-
dimensional temperature gradient (eq. 4.25) we can find a relation between 
  

€ 

Ri  and     

€ 

z / L: 
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2

. (6.18) 

And with (6.14) we obtain 
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€ 

Rf =
KH
Km

Ri =
x3
L

ΦH

(Φm )2
KH
Km

. (6.19)  

These equations can be used if, e.g. gradients of wind speed and temperature 
are available from which   

€ 

z L is derived iteratively. 
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