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5 Conservation Equations for Turbulent Flows 

5.1 Conservation Equations for Mean Variables in a 
Turbulent Flow 

The most fundamental approach to describe – and hence simulate – a hydro-
dynamic flow consists of setting up a set of conservation equations for mass, 
energy and momentum and trying to find a solution to this set of non-linear 
coupled differential equations. It is well known that for atmospheric flows this 
set of equations has, generally, no analytical solution. Therefore, either they 
are simplified (e.g., by neglecting ‘unimportant’ terms) until a solution is 
possible or they are solved numerically on a grid. In the latter approach the 
differentials are replaced by differences and for example a term like   

€ 

∂χ ∂x  will 
become     

€ 

(χi +1 − χi ) Δx , where 

€ 

χ  is just some general variable and   

€ 

Δx  
represents the grid spacing between grid point i and grid point i+11. This 
general approach is employed in essentially all atmospheric models ranging 
from global climate and weather prediction models down to very detailed local 
flow models. In principle, this is also the case for models aiming at describing 
a turbulent flow. However, as we have seen, turbulence continuously covers 
all scales from a few millimeters up to the dimensions of the entire boundary 
layer (Table 2.1) and this would make it necessary to employ extremely high 
spatial and hence temporal resolution when attempting to fully resolve 
turbulence in such a model2. Therefore, for any practical application the 
concept of Reynolds decomposition and averaging is applied to the 
conservation equations, which separates the turbulence scales from those of 
the mean flow (Chapter 3.3). Models, which use this type of Reynolds 
averaged conservation equations are referred to as Ensemble models, thus 
emphasizing the fact that Reynolds averaging is employed as a surrogate for 
a (desired) ensemble mean (see Chapter 3). 
The set of conservation equations as they are well known are summarized in 
Table 5.1. Before starting to look at the individual members of this set in some 
detail, we set out the general procedure how to proceed with Reynolds 
decomposition and averaging: 

Step 1: Formulate the conservation equation (Table 5.1). 
Step 2: Simplify where appropriate. 
Step 3: Apply Reynolds decomposition. 

                                            
1 There are many different ways to achieve this ‘discretisation’ on a grid such as finite 

differences (a variety of which is the simple example presented above), finite volumes or 
finite elements and even more numerical techniques to optimally set up such a scheme. 
However it is not the focus of the present book to go into detail in this respect. 

2 Indeed this is done in research applications over very limited domains (mostly for technical 
flows, like modelling the flow through a valve) and called direct numerical simulation (DNS). 
If the turbulence is partly resolved by filtering the conservation equations at an appropriate 
wave-number in phase space, this is referred to as Large Eddy Simulation (LES). The latter 
approach constitutes the most advanced modelling technique available for present-day 
computing power. 
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Step 4: Reynolds-average the resulting equation to obtain the 
conservation equation for the mean flow variable. 

Step 5: Express the result of step 4 in flux form (if appropriate). 
Step 6: Subtract the result of step 4 from that of step 3 to obtain the 

conservation equation for the fluctuating variable. 
Step 7: Multiply the result of step 6 with another fluctuating variable to 

obtain an equation for the corresponding second order moment. 
Step 8: Reynolds-average the result of step 7 to obtain the conservation 

equation for this mean second order moment. 
(Step 9: Repeat steps 6-8 to obtain conservation equations for even 

higher order moments). 
 

Table 5.1: Conservation equations for atmospheric flows 

Momentum: 

    

€ 

∂ui
∂t

+ uj
∂ui
∂xj

= −δi 3g + fcεij 3uj −
1
ρ
∂p
∂xi

+
1
ρ

∂σ ij

∂x j

 (5.1a) 

Energy: 

    

€ 

∂θ
∂t

+ uj
∂θ
∂xj

= νθ
∂2θ

∂xj
2
−

1
ρcp

∂NRj

∂xj
−

LvE
ρcp

+
Rc
ρcp

 (5.1b) 

Specific 
humidity: ρ∂

∂
∂
∂ E

x
qu

t
q

j
j =+

 

(5.1c) 

Trace gas: 

  

€ 

∂C
∂t

+ uj
∂C
∂xj

= Q −S
 

(5.1d) 

Mass: 

  

€ 

∂ρ
∂t

+ uj
∂ρ
∂xj

= −ρ
∂uj

∂xj  
(5.1e)

 

 
Equation of 
State: 

  

€ 

p = Ra ⋅ ρ ⋅T    (5.1f)
 

g: acceleration due to gravity;   

€ 

fc  Coriolis parameter; p pressure, 

€ 

σ  shear stress tensor;   

€ 

εijk=1 
if (i,j,k) cyclic, =1 if (i,j,k) anti-cyclic and zero otherwise; 

€ 

νθ  thermal viscosity;   

€ 

NRj  component 
of net radiation in j-direction;   

€ 

Lv  latent heat of evaporation,   

€ 

Rc  energy released from chemical 
reactions (or other processes); E evaporation; Q source for trace gas; S sink for trace gas;   

€ 

Ra  
‘ideal gas’ constant for air (    

€ 

≡R / Ma ≈ 286Jkg−1K−1, where   

€ 

Ma  is the molecular weight of dry 
air). 

 

5.1.1 Equation of State for ideal gases 
Starting from eq. (5.1f), applying Reynolds decomposition yields  

    

€ 

p + p'= Ra (ρ T + ρ T '+ρ' T + ρ' T' ) . (5.2) 

Reynolds averaging according to the rules outlined in Table 3.2 then leads to  

    

€ 

p = Ra (ρ T + ρ' T'). (5.3) 
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The fluctuations of density and temperature are highly correlated, but still 
since     

€ 

T '=O(1K) and   

€ 

ρ'=O(    

€ 

10−2kgm−3) the covariance term in (5.2) becomes 
much smaller than the first term on the rhs so that 

    

€ 

p ≈ Ra (ρ T )  (5.4) 

to good accuracy. Subtracting (5.4) from (5.2) yields an equation for the 
fluctuating pressure  

    

€ 

p'= Ra (ρ T '+ρ' T + ρ' T' ) . (5.5) 

Equation (5.5) can easily be divided by     

€ 

p / Ra = ρ T  and brought to the form 

    

€ 

p'
p 

=
T '
T 

+ ρ'
ρ 

+
ρ' T'
ρ T 

. (5.6) 

Both the fluctuating density and temperature are much smaller than their 
mean counterparts, so that the last term on the rhs of (5.6) can safely be 
neglected. We know that     

€ 

p'=O(0.1hPa) and hence     

€ 

p' /p =O(  

€ 

10−4 ) while 

    

€ 

T ' /T =O(  

€ 

10−2 ) (see above: temperature fluctuations). Therefore, from (5.6) it 
follows that also the density fluctuations must be the same order of magnitude 
as the temperature fluctuations and hence 

    

€ 

ρ'
ρ 

= −
T '
T 

. (5.7) 

This relation is, first of all, obvious since warm eddies will have a smaller 
density. Second it will help us to replace the density fluctuations as they 
appear in some of the equations below to be replaced by the more easily 
obtainable temperature fluctuations.  

5.1.2 Continuity Equation (Conservation of Mass) 
The incompressibility assumption states that the density changes are much 
smaller than the divergence of the flow field under typical atmospheric 
conditions and can thus be neglected. Indeed this is a very good 
approximation for essentially all ABL flows. Therefore, steps 3,4 and 6 to eq. 
(5.1e) yields 

    

€ 

∂u j
∂xj

= 0    ;
∂u' j
∂xj

= 0
 

(5.8) 

Equation (5.8) states that the continuity equation is (to good accuracy) valid 
for both the mean flow and the velocity fluctuations. 
We employ the continuity equation to derive the so-called flux form of the 
advection terms (see step 5 above). The advection term for a general variable 

€ 

χ  is   

€ 

uj ∂χ ∂xj  and we therefore have with the aid of (5.8) 

    

€ 

∂(uj χ)
∂x j

= χ
∂uj

∂xj
+ uj

∂χ
∂x j

= uj
∂χ
∂xj  (5.9) 
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The rhs of (5.9) is what we usually will encounter in the various conservation 
equations while the lhs is what we want, i.e. the flux divergence for any 
quantity 

€ 

χ .  According to (5.8) we can use (5.9) for both the mean and 
fluctuating terms. 

5.1.3 Conservation of momentum 
The three equations (summation on index i) for conservation of momentum on 
a rotating Earth are generally referred to as Navier-Stokes Equations and are 
repeated here for convenience: 

    

€ 

∂ui
∂t

+ uj
∂ui
∂xj

= −δi 3g + fcεij 3uj −
1
ρ
∂p
∂xi

+
1
ρ

∂σ ij

∂x j

  I           II           III       IV          V          VI
 (5.1a) 

The terms denote, respectively: the local temporal change (I); the advection 
term (II); acceleration due to gravity (III); the Coriolis term (IV); the pressure 
gradient (V) and the shear stress due to molecular friction (VI).  

Step 2: Simplifications and Assumptions 
The most straightforward assumption is that of a Newtonian fluid (see BOX 
‘Tools to describe atmospheric flows’ in Chapter 2). With this, term (IV) 
becomes  

    

€ 

1
ρ

∂σ ij

∂xj
= ν

∂2ui

∂xj
2

. (5.10) 

Note that in this formulation we have already used the assumption of 
incompressibility.  
The next simplification that is usually invoked in describing the conservation of 
momentum deals with density fluctuations and is known as Boussinesq 
Approximation. To better understand what it is all about we consider the 
conservation equation for the vertical velocity component (i=3) for a 
horizontally homogeneous flow, in which the viscosity is constant: 

    

€ 

dw
dt

= −g − 1
ρ
∂p
∂z

+ ν
∂2w
∂z2

 (5.11) 

(Note that we have employed the total temporal derivative – simply for 
convenience). We now apply Reynolds decomposition and multiply the whole 
equation with   

€ 

ρ = ρ'+ρ   

    

€ 

(ρ'+ρ ) d(w + w' )
dt

= −(ρ'+ρ )g − ∂(p + p' )
∂z

+η
∂2(w + w' )

∂z2
, (5.12) 

where 

€ 

η = ρν  (eq. (2.6)).  Dividing (5.12) by the mean density yields 

    

€ 

(1+ ρ'
ρ 

) d(w + w' )
dt

= −
ρ'
ρ 

g - g − 1
ρ 
∂p 
∂z

−
1
ρ 
∂p'
∂z

+ ν
∂2(w + w' )

∂z2

                                      < - - - - -- >
, (5.13) 
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where we have employed that   

€ 

η /(ρ'+ρ ) ≈ η/ρ = ν . The gravity and the 
pressure gradient terms (underlined with double arrow in eq. (5.13) are by far 
the largest (on the order of     

€ 

10ms−2 ). These two terms can, in fact, be 
rearranged to yield the hydrostatic equation (  

€ 

∂p = −gρ∂z). Often for large-
scale flows it can be assumed that it is in hydrostatic equilibrium. This is 
justified if no steep topography or other obstacles are producing local 
pressure effects and usually this assumption may hold down to a spatial grid-
resolution of around 10km. Under the hydrostatic assumption these two terms 
cancel each other in (5.13)3. Analyzing the orders of magnitude of the 
remaining terms in (5.13) shows that   

€ 

1+ ρ' ρ ≈1 and hence the density 
fluctuations can be neglected as compared to the mean. However,   

€ 

ρ' ρ  also 
appears in connection with   

€ 

g and this term proves to be the second largest 
term after the two leading terms, which cannot be neglected. The Boussinesq 
approximation therefore demands 

Neglect the density fluctuations with respect to the mean (
  

€ 

ρ' ρ ≈ 0), but not in the gravity term. 

A practical way to introduce the Boussinesq approximation in a set of 
equations (e.g. for a numerical model) therefore consists of replacing the 
density by the mean density (

€ 

ρ → ρ ) and the acceleration due to gravity   

€ 

g by 

    

€ 

g(1−θ' θ )  (where we have used (5.7))4. 
The Boussinesq approximation is valid if the so-called shallow convection 
conditions are fulfilled (Stull 1988), i.e. if  
- the domain height (in our case: the boundary layer height) is much 

smaller than the scale height (    

€ 

≈ 8km ), i.e. that height where the 
pressure in an isothermal atmosphere has dropped to its eth fraction. 

- the density fluctuations (and hence the temperature fluctuations and 
the pressure fluctuations – see discussion in connection with eq. (5.6)) 
can be neglected with respect to their mean 

- the flow is incompressible 
- the stratification is unstable (or slightly stable at most). 

Applying all these assumptions to (5.1a) yields 

    

€ 

∂ui

∂t
+uj

∂ui

∂xj
= −δi3g(1−

θ '
θ 

) + fcε ij3uj −
1
ρ 
∂p
∂xi

+ν
∂2ui

∂xj
2 . (5.14) 

                                            
3 Note that what is usually referred to as a hydrostatic model, essentially makes this scale 

analysis of (5.13) and only keeps the hydrostatic equation. Thus the conservation equation 
for vertical velocity component is simply this hydrostatic equation. 

4 This is basically what we have done in eqs. (5.11) to (5.13). 
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Steps 3/4: Reynolds decomposition and averaging  
Reynolds decompositions has, of course, not to be applied to the gravity term 
(this has been done already in the Boussinesq approximation) and we obtain 
after applying the Reynolds averaging rules 

    

€ 

∂u i
∂t

+ u j
∂u i
∂xj

+ u' j
∂u'i
∂x j

= −δi 3g + fcεij 3u j −
1
ρ 
∂p 
∂xi

+ ν
∂2u i
∂x j

2 . (5.15) 

We note, first of all, that the Boussinesq approximation has no effect at all on 
the conservation equation for mean momentum. It will only become 
instrumental in the conservation equations for higher order moments. 
Comparing further (5.15) with (5.1a) reveals that – apart from replacing all 
variables by their mean – only one additional term (three terms per equation 
by invoking the Einstein summation, of course) has appeared in (5.15), i.e. the 
third on the lhs.  

Step 5: Flux form  
Using (5.9) on this new term in (5.15) yields  

    

€ 

∂u i
∂t

+ u j
∂u i
∂xj

+
∂
∂xj

(ui
'uj

' ) = −δi 3g + fcεij 3u j −
1
ρ 
∂p 
∂xi

+ ν
∂2u i
∂x j

2 . (5.16) 

The new terms in (5.16) are related to the divergence of the turbulent fluxes 
(covariances). Even if there is only one additional term between (5.1a) and 
(5.16) due to the introduction of turbulence through Reynolds decomposition 
and averaging, it is clear that in the ABL, where the turbulent fluxes are 
substantial this is a crucial step for an appropriate description of the flow. 

5.1.4 Conservation of Energy 
We start with the first law of thermodynamics to show that conserving 
(internal) energy essentially (in the atmospheric boundary layer) means 
conserving potential temperature. The first law of thermodynamics reads 

  

€ 

δQ = cvdT − pdα . (5.17) 

where  

€ 

δQ  is the increment of energy,   

€ 

cv  the specific heat at constant volume 
and   

€ 

α = 1/ ρ . With the aid of the equation of state and writing out the total 
differential   

€ 

dα , (5.17) can be written as 

  

€ 

δQ = cpdT −RaT
dp
p . (5.18) 

Now, considering the total differential of the potential temperature we find – by 
introducing the definition of potential temperature – 

    

€ 

dθ = (po
p

)κdT −κT (po
p

)κ−1 po

p2
dp

     = θ(dT
T
−

Ra
cp

dp
p

)
. (5.19) 
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Therefore, the product 

  

€ 

dθ
Tcp

θ
= cpdT −RaT

dp
p   (5.20) 

is equal to the rhs of (5.18). Using again the definition of the potential 
temperature we have 

    

€ 

δQ =
T
θ

cpdθ = (po
p

)−κ cpdθ
 . (5.21) 

For     

€ 

po = 1000hPa  and     

€ 

p = 900hPa, say,     

€ 

δQ ≈ 0.97cpdθ , and for     

€ 

p = 800hPa 
the factor is about 0.94. Thus to good accuracy the conservation equation for 
potential temperature can be taken as a surrogate for conserving (inner) 
energy.  
In the conservation equation for potential temperature (5.1b) 

    

€ 

∂θ
∂t

+ uj
∂θ
∂xj

= νθ
∂2θ

∂xj
2
−

1
ρcp

∂NRj

∂xj
−

LvE
ρcp

+
Rc
ρcp

 (5.1b) 

the terms on the rhs are due to, respectively: the molecular diffusion of heat; 
the divergence of radiation (  

€ 

NRj = the component of net radiation in j- 
direction); phase changes of water; any other source/sink such as from 
chemical reactions (  

€ 

Rc  denoting just a generic energy portion released or 
required for such a process). The last three are all ‘essentially external’, i.e. 
independent of the flow itself. They may therefore be summarized to one  

    

€ 

1
ρcp

∂NRj

∂xj
−

LvE
ρcp

+
Rc
ρcp

≡
1
ρcp

QR  (5.22) 

Finally, applying Reynolds decomposition and averaging as well as bringing 
the result into flux form yields 

    

€ 

∂θ 
∂t

+ u j
∂θ 
∂xj

+
∂
∂x j

(u' j θ') = νθ
∂2θ 

∂xj
2

+
1
ρ cp

QR  (5.23) 

Again, as for the conservation equation for momentum, the only difference 
between the original equation (5.1b) and the final result (5.23) is, that the 
variables now are mean variables and the additional term on the lhs, which 
describes the divergence of the turbulent flux of sensible heat. 

5.1.5 Mass Conservation for a trace constituent 
The conservation of specific humidity (  

€ 

q) and an arbitrary trace gas such as a 
pollutant are treated in the same way because at this stage we do not have 
any simplifications to introduce. Therefore steps 3, 4 and 5 are applied all 
together and the conservation equations for a mean trace constituent in a 
turbulent flow read 
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ρ∂
∂

∂
∂

∂
∂ Equ

xx
qu

t
q

j
jj

j =++ )’( ’

 (5.24) 

    

€ 

∂C 
∂t

+ u j
∂C 
∂xj

+
∂
∂xj

(uj
' C') = Q −S 

. (5.25) 

5.1.6 Summary of first order conservation equations 
Table 5.2 summarizes all the conservation equations we have to deal with in 
order to describe a mean turbulent flow. All the equations differ from the 
original ones (Table 5.1) only through the fact that the variables are mean 
variables now and, most important, the additional flux divergence terms. 
Having noticed the importance of turbulent fluxes in general within the ABL, 
we observe then that the ‘turbulence enters the conservation equations for 
mean variables’ through the Reynolds decomposition procedure and 
manifests itself as the often even dominating flux divergence term in each of 
the equations.  
 
Table 5.2: Conservation equations for mean variables in turbulent flows. 

Assumptions are the Boussinesq approximation, incompressible flow 
and a Newtonian fluid. 

Momentum: 

    

€ 

∂u i
∂t

+ u j
∂u i
∂xj

+
∂
∂xj

(ui
'uj

' ) = −δi 3g + fcεij 3u j −
1
ρ 
∂p 
∂xi

+ ν
∂2u i
∂x j

2

 

(5.16) 

Energy: 

    

€ 

∂θ 
∂t

+ u j
∂θ 
∂xj

+
∂
∂x j

(u' j θ') = νθ
∂2θ 

∂xj
2

+
1
ρ cp

QR  (5.23) 

Specific 
humidity: ρ∂

∂
∂
∂

∂
∂ Equ

xx
qu

t
q

j
jj

j =++ )’( ’

 

(5.24) 

Trace gas: 

    

€ 

∂C 
∂t

+ u j
∂C 
∂xj

+
∂
∂xj

(uj
' C') = Q −S 

 

(5.25) 

Mass: 

    

€ 

∂u j
∂xj

= 0    ;
∂u' j
∂xj

= 0
 

(5.8)
 

 
Equation of 
State: 

  

€ 

p = Raρ T    (5.4)
 

 

In Chapter 2 it was stated that the turbulent diffusion is some   

€ 

106  larger than 
the molecular diffusion (Table 2.2). Hence the terms describing the molecular 
diffusion can safely be neglected as compared to the turbulent flux divergence 
(they are only kept here for completeness). 
The equations summarized in Table 5.2 constitute the basis for setting up a 
model for boundary layer flows. These equations are solved on a grid (i.e. at 
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each grid point) as shown in Fig. 5.1 by replacing the derivatives with finite 
differences. Restricting ourselves for the moment to the pure flow (without 
trace gas, but with specific humidity taken into account) we have seven 
equations and seven mean variables (i.e., first order moments). This system 
could numerically be solved. However, in addition there are a number of 
second order moments (covariances) introduced through the Reynolds 
decomposition. These additional variables may be treated by introducing 
conservation equations for higher-order moments (see Section 5.1.7). 
Alternatively, we may use similarity theory (Chapter 4) to directly describe 
these ‘new’ variables. Since most of the similarity relations are in one way or 
the other dependent on surface fluxes (Chapter 4), many models employ 
surface layer similarity theory (MOST) to estimate the surface fluxes from the 
information at the first model level. In other words it is assumed that the first 
model level is within the SL. 

 
Figure 5.1 Conceptual sketch showing a model grid domain as embedded 

(nested) in a larger (global) domain to provide the boundary and initial 
conditions.  
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For the Situation given in Fig. 5.2 one may assume that – for a given 
integration time – all the conservation equations have been solved and a set 
of mean variables is available at the first model level. In very general terms for 
the variable 

€ 

χ  we may express its surface flux  

      

€ 

w'χ 'o = −Cχ
 
u 

L1
(χ L1 − χ o ) . (5.26) 

Here,   

€ 

Cχ  is the exchange coefficient and the subscript ‘L1’ denotes the first 
model level. If 

€ 

χ  is the horizontal velocity component, the exchange 
coefficient is called drag coefficient and usually gets the subscript ‘D’: 

    

€ 

w'u'o = −CDu L1
2 . (5.27) 

Using MOST   

€ 

CD  can easily be determined to 

    

€ 

CD =
k2

ln z
zo

−Ψm (z / L)2$ 

% 
& 

' 

( 
) 

 (5.28) 

To evaluate the Obukhov length (eq. 4.12) a first guess can be based on the 
surface fluxes5 from the previous time step and an iterative procedure is used 
to solve for   

€ 

L. Since this is usually considered to be too cpu-time demanding, 
  

€ 

Ψm  is then approximated in a simplified form (e.g., Louis, 1979). 

 
Figure 5.2 First model levels in a numerical model. In the surface exchange 

parameterization the surface fluxes  

€ 

Fo  (e.g., for momentum, latent and 
sensible heat) are determined using the prognostic variables at the first 
model level,     

€ 

χL1, and those at the surface,   

€ 

χS . The velocity compo-
nents vanish at the surface by definition. The surface temperature and 
humidity are usually determined using the surface energy balance and 
hence the radiation balance (net radiation, NR) and the ground heat 
flux, G. The boundary Layer parameterization determines the turbulent 
exchange     

€ 

F1 between model levels within the boundary layer. 

                                            
5 The turbulent surface heat flux is determined in an analogous manner with 

€ 

χ =θ  in (5.26). 
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5.1.7 Conservation equations for higher order moments 
Having introduced a number of ‘new variables’ in the conservation equations 
for the mean flow variables through Reynolds decomposition one may want to 
find conservation equations for those. This is done, in general, by steps 6 to 8 
in the general outline at the beginning of Section 5.1. Here, it is demonstrated 
on the example of the momentum equation. 
The starting point in this exercise is eq. (5.16) 

    

€ 

∂u i
∂t

+ u j
∂u i
∂xj

+
∂
∂xj

(ui
'uj

' ) = −δi 3g + fcεij 3u j −
1
ρ 
∂p 
∂xi

+ ν
∂2u i
∂x j

2 . (5.16) 

This has – according to step 6 – to be subtracted from the fully expanded 
momentum equation, which is written out here for convenience 

    

€ 

∂u i
∂t

+
∂ui

'

∂t
+ u j

∂u i
∂xj

+ u j
∂ui

'

∂x j
+ uj '

∂u i
∂xj

+ uj '
∂ui

'

∂xj
=

−δi 3g + δi 3
θ'
θ 

& 

' 
( 

) 

* 
+ g + fcεij 3u j + fcεij 3uj

' −
1
ρ 
∂p 
∂xi

−
1
ρ 
∂p'
∂xi

+ ν
∂2u i
∂xj

2
+ ν

∂2ui
'

∂xj
2 (5.29) 

Subtracting (5.16) from (5.29) yields a prognostic equation for the fluctuating 
wind components 

    

€ 

∂ui
'

∂t
+ u j

∂ui
'

∂xj
+ uj '

∂u i
∂xj

+ uj
' ∂ui

'

∂xj
−
∂ui

'ui
'

∂xj
=

+δi3
θ '
θ 

& 

' 
( 

) 

* 
+ g + fcεij3uj

' −
1
ρ 
∂p'
∂xi

+ ν
∂2ui

'

∂xj
2  (5.30) 

We now multiply (5.30) by     

€ 

2ui
'  to yield 

    

€ 

2ui
' ∂ui

'

∂t
+ 2u jui

' ∂ui
'

∂xj
+ 2ui

'uj '
∂u i
∂xj

+ 2ui
'uj

' ∂ui
'

∂xj
−2ui

' ∂ui
'ui

'

∂xj
=

+2δi3ui
' θ'
θ 

& 

' 
( 

) 

* 
+ g + 2fcεij3ui

'uj
' −2 ui

'

ρ 
∂p'
∂xi

+ 2νui
' ∂

2ui
'

∂xj
2  (5.31) 

Note that with this multiplication we have introduced a summation. While in 
(5.30) the subscript ‘i’ was not summed (i.e., referring to three equations 
according to Einstein summation rules), eq. (5.31) now contains this subscript 
in each term twice so that summation has to be invoked. We further note that, 
e.g.,     

€ 

∂u'i
2 ∂t = 2ui

' ⋅ ∂ui
' ∂t  and eq. (5.31) can be rearranged 

    

€ 

∂u'i
2

∂t
+ u j

∂u'i
2

∂xj
+ 2u'i u' j

∂u i
∂xj

+ uj
' ∂u'i

2

∂xj
−2ui

' ∂ui
'ui

'

∂xj
=

+2δi3ui
' θ'
θ 

& 

' 
( 

) 

* 
+ g + 2fcεij3ui

'uj
' −2 ui

'

ρ 
∂p'
∂xi

+ 2νui
' ∂

2ui
'

∂xj
2  (5.32) 
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This is still summed. Reynolds averaging then leads to  

    

€ 

∂u'i
2

∂t
+ u j

∂u'i
2

∂xj
+ 2ui

'uj
' ∂u i
∂xj

+ uj
' ∂u'i

2

∂xj
=

+2δi 3ui
' θ '
θ 

% 

& 
' 

( 

) 
* g + 2fcεij 3ui

'uj
' −2ui

'

ρ 
∂p'
∂xi

+ 2νui
' ∂

2ui
'

∂xj
2  (5.33) 

Finally, bringing (5.33) into flux form and rearranging yields 

    

€ 

∂u'i
2

∂t
+ u j

∂u'i
2

∂xj
= −2ui

'uj
' ∂u i
∂xj

−
∂uj

' u'i
2

∂xj

+2δi 3ui
' θ '
θ 

& 

' 
( 

) 

* 
+ g + 2fcεij 3ui

'uj
' −

2
ρ 

u'i
∂p'
∂xi

+ 2νu'i
∂2u'i
∂xj

2  (5.34) 

Due to the summation introduced in step 6, equation (5.34) is, first of all, the 
conservation equation for TKE (cf. the definition of TKE, eq. 3.25). We will 
come back to its meaning and application in Chapter 6. We only note here, 
that the Boussinesq approximation has now its effect in that the buoyancy 
term remains even if otherwise density fluctuations are neglected.  
If the Einstein summation convention is interpreted only weakly, (5.34) may 
also yield 3 conservation equations for the three velocity variances. What 
does this mean? Grouping all the terms in (5.34) with     

€ 

i = 1,     

€ 

i = 2 and     

€ 

i = 3 
together, denoting these groups with A, B and C, respectively and finally 
bringing all the terms to one side of the equation, (5.33) can be expressed as 
    

€ 

A + B + C = 0. This is consistent with     

€ 

A = 0 (    

€ 

i = 1),    

€ 

B = 0 (    

€ 

i = 2) and     

€ 

C = 0 (
    

€ 

i = 3), although this is only one special solution to the full equation. Still, this 
weak interpretation of the summation rules is used to obtain the conservation 
equations for the velocity variances: 

    

€ 

∂u'1
2

∂t
+ u j

∂u'1
2

∂xj
= −2u1

'uj
' ∂u 1
∂xj

−
∂uj

' u'1
2

∂xj

+2fcu1
'u2

' −
2
ρ 

∂u'1 p'
∂x1

+
2
ρ 

p'
∂u'1
∂x1

−2νu'1
∂2u'1
∂x1

2  (5.35) 

    

€ 

∂u'2
2

∂t
+ u j

∂u'2
2

∂xj
= −2u2

' uj
' ∂u 2
∂xj

−
∂uj

' u'2
2

∂xj

−2fcu1
'u2

' −
2
ρ 

∂u'2 p'
∂x2

+
2
ρ 

p'
∂u'2
∂x2

−2νu'2
∂2u'2
∂x2

2  (5.36) 
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€ 

∂u'3
2

∂t
+ u j

∂u'3
2

∂xj
= −2u3

' uj
' ∂u 3
∂xj

−
∂uj

' u'3
2

∂xj

+
2g
θ 

u3
'θ ' −2u3

' uj
' ∂u 3
∂x j

−
2
ρ 

∂u'3 p'
∂x3

+
2
ρ 

p'
∂u'3
∂x3

−2νu'3
∂2u'3
∂x3

2  (5.37) 

5.2 Closure Problem and Closures 
In the previous sections of this chapter the conservation equations for the first 
moments (mean variables) in a turbulent flow were derived with the result that 
through Reynolds decomposition second order variables entered the problem. 
As a possible solution it was offered to use conservation equations for those 
second order moments as additional constraints to solve the set of equations. 
However, inspecting eq. (5.33) as one example for the second order moment 
equations, it becomes immediately clear that even more unknowns (third 
order moments) appear in these equations. In fact, it can be shown that the 
higher the order of moments for which conservation equations are derived, 
the larger the number of unknowns becomes. This dilemma – the higher the 
order of moments for which conservation equations are taken into account, 
the more unknowns – is called the closure problem. The set of equations is 
never closed.  
So, very generally when trying to describe a turbulent flow through its 
conservation equations we always get into trouble: either we have to resolve 
the entire spectrum of turbulent fluctuations and this leads to enormous 
requirements of computing resources (cpu-problem). Alternatively, we treat 
the turbulence in a statistical manner and introduce Reynolds decomposition 
and averaging – and this leads to the closure problem. The former problem 
may be solvable in some distant time when computers will have become even 
much more powerful than they are today. The latter, the closure problem, is 
solved by making a closure assumption. A closure is characterized by its 
order: 
Closure of order   

€ 

n:  conservation equations are taken into account for 
statistical moments up to order  

€ 

n. The moments of order 
    

€ 

n +1, which appear in these equations are found from 
parameterizations. 

For example, a closure of first order would use the equations of Table 5.2 for 
the mean variables (first order moments) and parameterize all the (co-) 
variances (second order moments). If we denote the   

€ 

jn  moments of order   

€ 

n 
with   

€ 

Mn
j n  and allow for     

€ 

Pj n+1
parameters, the unknown moments of order     

€ 

n +1 
can be parameterized through 

Closure of order   

€ 

n:       

€ 

Mn+1
j n+1 = f (Mn

j n ,  Mn−1
j n−1 ,  ...M1

j1 ,  Pj n+1
). 

Clearly, not all the moments of order   

€ 

n must be used in every 
parameterization for the higher order moments – but they may. 
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Parameterizations may be looked at as a ‘short cut’ for complicated physics 
or, sometimes, as an emergency solution for unknown physics. In finding 
these parameterizations, however, one has to follow some basic rules: 
- The parameterization must be consistent with the unknown in terms of 

physical units and tensor symmetries. 
- The parameterization must be invariant with respect to transformations 

(e.g. coordinates) 
- Global constraints and conservation principles for the unknown must 

not be violated. 
According to the above notation, the conservation equations of Table 5.2 are 
sufficient for a first-order closure. If, for example, a model is to be set up for 
the flow in the SL, Monin-Obukhov similarity theory (Chapter 4) may be used 
to derive the parameterizations6 for the second order moments.  
So, which closure should be chosen? One may think that ‘the higher order the 
closure, the better’. This is certainly not true. We know quite little for moments 
higher than third (sometimes fourth) order. So, any parameterization becomes 
pure guesswork. So, the highest realistic and feasible order for turbulence 
closures is two (sometimes three). In the following we will introduce some of 
the most common and most frequently used closure schemes. 

5.2.1 First order closure 
In first order closures all the second order moments must parameterized. We 
first note that this means that in such a framework the entire information on 
turbulence for this flow is then buried in the closure. Still, due to its relative 
simplicity this closure is the most often used and hence best investigated 
closure approach. Due to the commonly used notation (see below) first order 
closure is often referred to as ‘K-Theory’. We introduce this approach by 
looking at the exchange of momentum. 
In analogy to molecular diffusion where the local shear stress is described as 
proportional to the deformation rate (see box ‘Tools to describe atmospheric 
flows’ in Chapter 2) 

    

€ 

σ ij
mol = ρνsij =: ρν ∂ui ∂xj + ∂uj ∂xi( )  (5.38) 

a similar approach if followed for the Reynolds stress tensor

€ 

τ  because its (off 
diagonal) elements  describe the turbulent transport of momentum due to the 
turbulent shear stress: 

    

€ 

τ ij

ρ 
= −(Km )ij ∂u i ∂xj + ∂u j ∂xi( ), (5.39) 

where the minus sign is introduced for convenience to take into account the 
fact that the turbulent flux is usually directed opposite to the mean gradients. 

                                            
6 This is why MOST is sometimes referred to as ‘zero order closure’ (no conservation 

equations at all) – to be consistent with the closure notation. However, it is clear that the 
similarity principles are more than just parameterizations. 
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The subscript ‘m’ stands here for momentum and the exchange coefficient 

    

€ 

(Km )ij  is most generally also a two dimensional tensor. Its elements are 
sometimes also referred to as ‘turbulent diffusivity’ or ‘eddy viscosity’. For an 
ideal horizontally homogeneous flow with its x-axis aligned to the mean wind 
direction (5.38) simplifies to 

    

€ 

τ13
ρ 

= u'1u'3 = −(Km )13
∂u 1
∂x3

 (5.40) 

and     

€ 

(Km )13  is often denoted simply as   

€ 

Km.  
It is first noted that ‘K-Theory’ is a local approach in that the turbulent fluxes at 
a certain height are parameterized by the gradient of the mean variables at 
the same level. It is hence valid if small-scale turbulence prevails, i.e. if the 
eddies are not much larger than the height range where this gradient occurs. 
In the ABL this is the case in the SL at least if the stratification is not too 
convective, in the entire neutral ABL and to some extent also in the SBL. 
Equation (5.39) can be generalized to other turbulent fluxes that need to be 
parameterized according to 

 
    

€ 

w'a' = −Kai
∂a 
∂xi

, (5.41) 

where ‘  

€ 

a ’ may denote the potential temperature (

€ 

θ ), the specific humidity (  

€ 

q) 
or the concentration of a trace constituent of the atmosphere (  

€ 

C ). In the form 
of (5.40) and (5.41) and with     

€ 

i = 3 first order closure or ‘K-Theory’ is most 
commonly employed. 
Clearly, with the ‘K-approach’ we have only shifted the problem of 
parameterizing the unknown turbulent fluxes towards specifying the unknown 
  

€ 

K . The simplest approach would certainly be to assume     

€ 

K = const. but this 
proves not to be the best assumption (e.g., Stull 1988). In the early 20th 
century Prandtl proposed the so-called mixing length approach for momentum 

    

€ 

Km = l2 ∂u 1
∂x3

, (5.42) 

and v. Kàrmàn has introduced a simple parameterization for the mixing 
length,   

€ 

l = kz (with     

€ 

k ≈ 0.4 the v. Kàrmàn constant). If we insert this in (5.40), 
use the definition of the friction velocity (3.42) and rearrange we obtain  

    

€ 

∂u 1
∂x3

z
u*

=
1
k

. (5.43) 

Thus the Prandtl / v. Kàrmàn approach is consistent with Monin-Obukhov 
Similarity Theory (MOST) for neutral stratification (cf. equation (4.14)) or, in 
other words, the latter is an extension of the former for general stability. Note, 
however, that in the framework of MOST for neutral stratification,     

€ 

Km = kzu*  
and thus the exchange coefficient is itself dependent on the surface flux of 
momentum. 
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For each regime the similarity relations (Chapter 4) may therefore help to find 
appropriate formulations for the exchange coefficients. Stull (1988) gives an 
overview (his Table 6-4). We may add here a word of caution. Even if 
parameterizations for the exchange coefficients can be found for convective 
conditions (as for example in Stull’s table), first order closure is not 
appropriate in the ML. We will come back to this issue below (Section 5.2.3).  

5.2.2 Closure of order 1.5 
In the literature one not only finds closures with an integral number order but 
also mixed (fractional) orders. As an example the so-called   

€ 

e −ε  closure 
model is briefly outlined, which is of order 1.5. In this approach the turbulent 
fluxes are parameterized according to (5.41) but the model for the exchange 
coefficients uses the turbulent kinetic energy (  

€ 

e ) and the dissipation rate for 
TKE (

€ 

ε) 

    

€ 

Km ∝
e 2

ε
, (5.44) 

and solves prognostic equations for these variables (e.g., equation (5.34) for 
TKE – see also Chapter 6). This approach (apart from being dimensionally 
consistent) thus recognizes the fact the TKE and the dissipation rate of TKE 
are both important variables for the turbulent exchange. This closure is 
therefore first order in principle, but some higher order moments are also 
taken into account (hence the notation). Note that there are a number of 
similar 1.5 order turbulence closure models in the literature, which employ a 
similar approach as described here, but with various extensions or additional 
constraints being invoked. 

5.2.3 Non-local closure 
Up to now all the closures presented were local in the sense that a turbulent 
flux (or any other higher order moment) at a certain height is parameterized 
using the gradient of the mean variable at this very height. In Fig. 5.3 typical 
profiles of the potential temperature and the turbulent flux of sensible heat are 
sketched to show the failure of such an approach in the CBL. At any height   

€ 

zf  
outside the surface layer it is readily seen that     

€ 

∂θ ∂z ≈ 0 while the turbulent 
flux of sensible heat is different from zero. Thus any formulation for the 
exchange coefficient of the type (5.42) must fail. This is due to the fact that in 
the CBL large eddies of order   

€ 

zi  dominate the turbulent exchange and the 
local gradient of the mean potential temperature is not a good measure to 
represent this process. 
A pragmatic way to solve this problem is to introducing a ‘counter gradient 
term’ in the parameterization for, e.g., the turbulent heat flux, viz. 

    

€ 

w'θ ' = −KH (∂θ 
∂z

− γθ ) , (5.45) 
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which may itself be parameterized from using some knowledge of the CBL 
(e.g., Holtslag and Boville 1993). Such approaches may be used if computing 
efficiency is important as for example in global atmospheric models. 
 

 
Figure 5.3 Sketch of potential temperature and turbulent heat flux profiles in the 

CBL.  

 
Another non-local closure model is known as Transilient Turbulence Theory 
and is described in detail by Stull (1988). Its basic idea consists of requiring 
that the turbulent exchange at any point in space may be, in principle, 
influenced from any other point in the domain.  If the domain is sub-divided 
into boxes (Fig. 5.4) small eddies would be represented by exchange between 
neighboring boxes while large eddies are described by exchange between 
distant boxes. Similar to a ‘K-Theory’ approach the exchange is then 
described as proportional to the difference in the mean property between all 
the possible pairs of boxes. For this the mixing of a property   

€ 

C  in a column 
with   

€ 

n boxes is formally described as how this property at position i changes 
(after a time step   

€ 

Δt , say) due to exchange with all the other boxes: 

    

€ 

C i (t + Δt) = Mij (t,Δt) ⋅
j =1

n
∑ C j (t) . (5.46) 

The transilient matrix   

€ 

Mij  contains the relative weights of the mixing process 
and has the dimensions     

€ 

n x n. Thus the turbulent flux at box   

€ 

i  may be written 
as the superposition from all the exchanges in any box with all the other 
boxes in the domain: 

    

€ 

w'C'(i ) = (Δz
Δt

) Mij (C i
j =1

n
∑ −C j )

k=1

i
∑ , (5.47) 
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where   

€ 

Δz  is the size of the grid box. Clearly, the main issue of Transilient 
Turbulence Theory is setting up the matrices for different flow types and a 
number of ready examples are given in Stull (1988 – and references therein). 
Even if the approach is not truly physical (and hence no physical constraints 
can be used to define the matrix) a number of studies have shown the 
potential of this approach and the good results that can be obtained by 
employing it. 

 
Figure 5.4 Boxes for Transilient turbulence theory. The arrows between boxes ‘i’ 

and ‘i+1’ represent small-scale turbulence (exchange between 
neighbouring cells) and the large arrow refers to an example for non-
local exchange. 

5.2.4 Choice of turbulence closure 
Most atmospheric models such as global climate and weather prediction 
models, but also so-called meso-scale models (e.g., for dispersion 
calculations) or pure boundary layer models employ a local closure due to 
computational convenience. This simply means that for the calculation of the 
turbulent fluxes only the information from the very grid point is required and 
not the entire ABL must be considered. Mellor and Yamada (1982) give a 
comprehensive overview on available closures and approaches7.  
As a rule we have seen that first order closure can be regarded sufficient if 
small-scale turbulence prevails, i.e. in the SL (if the stratification is not too 
convective), in the neutral boundary layer and in the SBL. In the latter, 
however, the local closure must be combined with some sort of local scaling 
(cf. Section 4.5.2). Clearly, if the flow to be described is far from ideal (i.e., 

                                            
7 Note that their ‘level k’ closure is not to be mixed up with the order of the closure as defined 

here. 
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over a horizontally homogeneous and flat surface) a higher order closure is 
desirable to take into account at least some parts of the turbulence explicitly. 

 
 
Figure 5.5 Profiles of     

€ 

u' w'  (appropriately scaled) for an idealised flow over a hill 
using different closure assumptions as indicated in the inlet (from 
Ayotte et al. 1994). The first two are 1st order closures, while the 
remaining are 1.5 or 2nd order. 

 
To correctly model the CBL, at least a second order closure is necessary – or 
at least some ‘non-local correction’ (see Section 5.2.3) should be considered 
(e.g., in global models). Similar arguments apply for the simulation of plant 
canopies (Chapter 8.2) where also eddies with the size of the canopy (i.e. the 
‘domain’ in this sense) dominate the turbulent exchange. The most 
appropriate approach for the CBL, however, consists of modifying the entire 
approach that led to the closure problem. Through Reynolds decomposition 
and averaging we have chosen to treat the entire spectrum of turbulent 
motions in a statistical manner. A step towards relaxing this consequential 
constraint – but still not trying to resolve the entire turbulence spectrum – is 
called Large Eddy Simulation (LES). In this approach the underlying 
conservation equations are filtered in the spectral domain, rather than 
averaged in the time domain, with the filter size ideally corresponding to a 
wavelength in the inertial subrange (Chapter 7)8. The model then explicitly 
resolves the larger turbulence structures (hence its name: large eddy 
                                            
8 The intertial subrange corresponds to the frequency range with periods between some 

seconds to a few minutes at most (see Chapter 7). Thus only the small-scale (local) eddies 
need to be parameterized. 
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simulation) and the turbulence closure model only needs to take into account 
the smaller (more likely to be local) structures. LES has become an important 
tool for the theoretical investigation of convective (Nieuwstadt et al. 1992) but 
also neutral (Moeng 1986) or even stable flows (Saiki et al. 2000). Similarly, 
canopy flows are investigated using LES (e.g., Patton et al, 2003). Many of 
the advanced ‘meso-scale’ numerical models have a LES-option for the 
simulation of flows in highly complex terrain (e.g., Zhong and Fast, 2003 or 
Katapodes Chow et al. 2005). 
As an example for the importance of the closure assumption employed in a 
numerical model, Fig. 5.5 shows the vertical profiles of turbulent transport of 
momentum for the flow over a (moderate and ideal) hill. It may be seen that – 
depending on the closure model – turbulent transport of momentum may differ 
by an order of magnitude. The closure therefore has a paramount importance 
for any simulation and analysis of turbulent flows.  

5.3 An Idealized Solution: The Ekman Spiral 
In the previous sections of this chapter we have seen how the conservation 
equations are to be treated in order to obtain a set of equations to be solved 
on a grid in a numerical model. In the early 20th century when computers were 
not available for this task scientists have attempted to simplify the problem in 
order to obtain analytical solutions. It is instructive to revisit one of these, the 
so-called Ekman Spiral due to some elucidating properties of the idealized 
boundary layer flow that become apparent from it. This solution has first been 
derived by Ekman (1905), an oceanographer, for ocean currents. Later, 
Taylor (1915) independently derived the same solution for the atmosphere. 
We closely follow here the description as given by Blackadar (1997).  
The equations of motion for a horizontally homogeneous and neutrally 
stratified flow reduce to (cf. Table 5.2) 

∂u
∂t

= fcv −
1
ρ
∂p
∂x

+
1
ρ

∂τ xz
∂z

 (5.48a) 

∂v
∂t

= −fcu −
1
ρ
∂p
∂y

+
1
ρ

∂τ yz
∂z

 (5.48b) 

Here, we use the (    

€ 

u,v,w) and (    

€ 

x,y,z) notation for convenience and the 
definition of the longitudinal and lateral components of the Reynolds stress 
tensor, equation (3.23), accordingly. In steady state without friction the wind 
speed would be become geostrophic at any level: 

fcvG =:
1
ρ
∂p
∂x

 (5.49a) 

    

€ 

fcuG = −
1
ρ 
∂p 
∂y  (5.49b) 
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Therefore, the departure from the ‘free stream’ velocity is due to the influence 
of friction and the pressure gradients in (5.48) can be replaced by (    

€ 

uG,vG): 

    

€ 

−fc (v −vG ) =
1
ρ 
∂τxz
∂z  (5.50a) 

    

€ 

fc (u −uG ) =
1
ρ 

∂τyz

∂z  (5.50b) 

Equations (5.50) describe the velocity defect or geostrophic departure and 
imply that the vertical stress distribution should be inferable from observations 
of wind and pressure gradients (see Blackadar, 1997 for details). 
Introducing a first order closure for the turbulent stresses (cf. 5.40) and at the 
same time assuming that the exchange coefficient be constant (i.e. 
independent of height) the set of equations reads 

    

€ 

−
fc

Km
(v −vG ) =

∂2

∂z2
(u −uG )

 (5.51a) 

    

€ 

fc
Km

(u −uG ) =
∂2

∂z2
(v −vG )

 (5.51b) 

In order to find an analytical solution we introduce the non-dimensional 
variables 

    

€ 

U =: (u −uG ) /u*;   V =: (v −vG ) /u*;   Z = fcz /u*  (5.52) 

and a dimensionless parameter 

    

€ 

β =: ( u*
2

2fcKm
)1/ 2

 (5.53) 

Equations (5.51) can then be written 

    

€ 

−2β2V =
∂2U
∂Z2  (5.54a) 

    

€ 

2β2U =
∂2V
∂Z2  (5.54b) 

Finally, introducing a complex variable       

€ 

W =:U + iV  the two equations (5.54) 
can be combined 

      

€ 

2iβ2W =
∂2W
∂Z2  (5.55) 

with the solution  

      

€ 

W = Wo exp −(1+ i )βZ{ } (5.56) 

as can easily be verified by inserting (5.56) into (5.55). Note that (5.55) also 
has another solution that is physically inconsistent (Blackadar, 1997).  
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It is instructive to represent (5.56) as 

      

€ 

W = Wo exp −βZ{ }( )exp −iβZ{ }, (5.57) 

where the first parenthesis determines the magnitude of   

€ 

W  and the second 
its direction. The vector     

€ 

Wo  corresponds to the value of   

€ 

W  at     

€ 

Z = 0. Its 
magnitude (and direction) has to be determined using appropriate boundary 
conditions. In any case, the magnitude of   

€ 

W  at any height     

€ 

Z > 0 is given by a 
multiplication of     

€ 

Wo  with 
    

€ 

exp −βZ{ } which is less than unity. This term reflects 

the influence of friction (albeit in an idealized setting) on the mean wind speed 
resulting in a decrease of magnitude when approaching the surface. The 
direction of   

€ 

W  relative to that of     

€ 

Wo  is given through 
    

€ 

exp −iβZ{ }  and 
corresponds to a clockwise rotation by the angle   

€ 

βZ  with increasing height. 
The resulting vertical representation of the velocity defect looks like some 
spiral and is therefore often referred to as Ekman Spiral (Fig. 5.6 as an 
example). For more detail concerning the problem of determining the 
boundary conditions in this idealized analytical model, see Blackadar (1997). 
The Ekman Spiral results from assuming horizontal homogeneity, stationarity 
and an exchange coefficient for momentum that is independent of height. 
Despite the quite unrealistic assumptions in this model we find, with proper 
boundary conditions, a realistic vertical distribution of the velocity defect in the 
boundary layer. Also, the approach helps to elucidate the impact of friction on 
the general behaviour of the flow when approaching the surface. First of all, 
the magnitude of the geostrophic wind is steadily reduced and the wind 
direction turns anti-clockwise (on the northern hemisphere) from the 
geostrophic direction. Clearly, the degree to what this happens depends on 
the latitude (  

€ 

fc) and the flow itself (    

€ 

u* ,  

€ 

Km). Still, (5.57) shows that for   

€ 

βz = π  
the surface wind direction is opposite to the geostrophic direction and the 
velocity deficit has reduced to some 4% of its surface value.  
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Figure 5.6 Observed profile of wind speed sounding over an ideally homogeneous 

ice covered surface in Greenland. Dashed line: the sounding, solid line: 
projection onto the horizontal plane (from Forrer 1999). 
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