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4 Similarity Theory 

4.1 Motivation 
In the statistical description of turbulence we have seen that the turbulence 
can, under certain circumstances, be separated from the mean flow and, 
formally, be introduced through Reynolds decomposition and averaging. Also, 
it was noted that products of variables under this treatment do lead to ‘new 
variables’, i.e. the co-variances  (  a’b’  - cf. Table 3.1)1, which were identified to 
sometimes even dominate the characteristics of the flow. When formally 
applying ‘Reynolds decomposition and averaging’ to the set of the 
conservation equations for atmospheric flows (as will be done in Chapter 5) 
we will find that a fundamental problem arises from this approach: the more 
equations we treat in this manner the more unknowns (‘new variables’) we are 
faced with. And the more conservation equations we derive for these 
unknowns, the more additional unknowns enter the problem. This is the so-
called closure problem. Still, this approach is instrumental for the construction 
of numerical models and solutions (closure assumptions) will be introduced in 
Section 5.2. 
However, a fundamentally different approach can be taken that does not seek 
to find a (analytical or numerical) solution to this problem. Rather, this 
approach attempts to find out whether there are means to predict the 
‘characteristics of the result’. Thus this approach employs the following 
arguments: 

• A turbulent flow could in fact be treated by traditional methods of fluid 
mechanics. However then, resolved time and space scales would have 
to be on the order of seconds and millimetres, respectively (see 
Chapter 7, spectral characteristics). 

• Thus, Reynolds decomposition and averaging is invoked, thereby 
employing the spectral gap, which conveniently separates the scales of 
mean flow and turbulence (Chapter 3). 

• The newly introduced co-variances are identified with important 
physical processes, i.e. turbulent transport of momentum, sensible and 
latent heat and it is observed that these new variables under certain 
circumstances even dominate the problem2. 

• An independent theory is then sought to describe these new variables 
independently from the conservation equations. Similarity theory is 
such an approach. 

Note that for some problems the formal approach is more promising and for 
other problems it is similarity theory. The majority of problems will even 

                                            
1 In Chapter 5 we will see that also higher order moments will eventually enter the problem. 
2 In terms of a formal scale analysis, this means that the terms including these turbulent 

fluxes dominate the respective conservation equation. 
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require elements of both. Prominent examples for the latter are numerical 
models: the formal approach is adopted in order to derive a basic form of the 
conservation equations that are solved in finite-difference form on a grid. For 
the scales between grid resolution and the smallest turbulence scales then, 
similarity arguments are employed (as a so-called turbulence closure 
assumption, see Chapter 6). 

4.2 Scaling and Similarity 
Often, unqualified statements like ‘a kilogram of rice costs only 5 cents in this 
or that developing country’ can be heard. By changing this into the more 
informative ‘a kilogram of rice costs a farmer in that country 5% of his average 
weekly salary’, the result has been scaled, in this case with the weekly salary. 
Another example for the usefulness of scaling may be the case when an 
unknown variable can more easily be estimated from its ratio to another 
quantity. Consider the (unlikely) task to estimate the head diameter of a large 
number of human beings – all Europeans, say. Rather than measuring all the 
heads a fruitful approach may consist in establishing, on the basis of a smaller 
sample, the average ratio between head diameter and height of a person. 
This may well even turn out to be roughly constant. Then the head diameter 
can easily be estimated from the information available in every passport. 

 
Figure 4.1 a) Two hypothetical observations of the vertical velocity variance in a 

CBL; b) as in a) but with scaled height axis, and c) with both axes 
scaled. 

Another issue, although related of course, is similarity. Figure 4.1a shows two 
observations of the vertical velocity variance. Apparently the two curves are 
similar, even if at a certain height one reading is at maximum while the other 
already vanishes. Noting that the height where the turbulence vanishes might 
be identified with the ‘mixed layer height’ yields Fig. 4.1b where the vertical 
axis is scaled with zi (mixed layer height). Choosing the ‘right’ scaling variable 
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also for the velocity variance (denoted 		w*
2  here for convenience), finally, leads 

to Fig. 4.1c. If correspondingly good results are obtained for a large number of 
cases, this means that under the given conditions (unstable boundary layer, in 
the example) the chosen characteristic velocity (		w*  - and hence the variables 
from which it is formed: see below) characterises the magnitude of the vertical 
velocity variance as a function of relative height within the CBL.  
The remainder of this chapter deals with objective methods to find the 
appropriate scaling variables and with the presentation of some so-called 
scaling regimes. 

4.3 Practical Approach  
Similarity theory as it is usually employed in boundary layer meteorology is 
based on a four-step procedure that is outlined below using the terminology of 
Stull (1988). These four steps are: 

1 Determine the relevant processes (or the corresponding characteristic 
variables) that determine the phenomenon to be described. 

2 Determine the maximum number N of independent non-dimensional 
so-called 

€ 

π -groups by using Buckingham’s 

€ 

π -Theorem. 
3 Any3 other mean variable of interest,   

€ 

a , that is made dimensionless by 
appropriate scaling variable (  a* ) may then be expressed as 

   

a
a*

= f a(π1, π2, ...πN  )  (4.1) 

4 Finally, make an experiment to determine   f a . It is important to notice 
that similarity theory as such does not make any prediction on the 
shape of this function, but clearly other knowledge may be used to 
specify certain conditions (e.g., limiting values, etc.) 

1) Relevant processes 
This is indeed the most important  (and also most difficult) step in the 
procedure. Only the result (step 4) will tell whether or not the right process 
choices have been made. In the example of Fig. 4.1 the choice was 
apparently successful4. If an important process is not considered, the result 
will show large scatter. On the other hand, if too many processes are 
identified as important, one (or more) 

€ 

π -groups will drop out as irrelevant. 

2) Buckingham’s 

€ 

π -Theorem 

                                            
3 In principle, all variables that respond to the same processes (as defined in step 1) will 

follow the assertion of step 3. In practice, exceptions may exist thus indicating that for this 
particular variable the chosen processes are not sufficient. 

4 The example is constructed, but it follows experience from Mixed Layer Scaling (see Section 
4.5) 
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This theorem states that in a system with  
  n  Variables 
   

€ 

r   fundamental physical dimensions (m, kg, s, K, Ampere) 
there are exactly   

€ 

N = n− r  possible independent dimensionless 

€ 

π -groups. 
Following Stull (1988) a practical approach (’recipe’) for the application of this 
theorem can be given as follows. 

A) Let the problem have   

€ 

n variables and   

€ 

r  physical dimensions. 
B) Choose among the   

€ 

n variables   

€ 

r  key variables under the condition that  
→ all fundamental dimensions are represented 
→ no dimensionless combination of the key variables must be possible 

C) Determine the ‘dimensions-equations’ for the remaining (not key) 
variables. 

D) Solve the ‘dimensions-equations’ to determine the exponents. 
E) For each of these equations: divide the lhs by the rhs (or vice versa) to 

obtain the 

€ 

π -groups. 
To illustrate this procedure it will be demonstrated by a few examples in this 
and the next section. 

3) Scaling variables 
The scaling variables are chosen from the pool of   

€ 

n variables and are also 
determined by solving the ‘dimensions-equations’. Clearly, a scaling variable 
must have the same physical dimensions as the variable to be scaled. 

4) Experiment 
As stated above, the experiment will yield the shape of function   f a  in (4.1) 
and will also indicate whether our choice of processes (variables) had been 
appropriate. If the scatter is sufficiently small we can be sure to have made 
the right choices. It is clear that in an environmental system (as the 
atmospheric boundary layer) we will rarely obtain ‘no scatter at all’ - even if 
the relevant (and not too many) processes are included. Still, in most cases it 
is quite obvious whether the result just reflects natural variability and 
observational uncertainty or indeed a bad choice of variables.  
Before turning our attention to scaling in the ABL it might be instructive to 
consider an example that is very familiar to atmospheric scientists (and is 
usually obtained by quite different means): the Geostrophic wind. In 
describing the wind field on the synoptic scale we have essentially four 
variables, which determine the flow: the air density (

€ 

ρ  in [    

€ 

kgm−3]), the Coriolis 
parameter (  

€ 

f  in [    

€ 

s−1]), a Length scale (    

€ 

L* in [  

€ 

m]) and the pressure difference (

  

€ 

Δp  in [    

€ 

kgs−2m−1]) with     

€ 

r = 3 physical dimensions. Thus we have only     

€ 

N = 1 

€ 

π
-group.  Let us choose   

€ 

f ,     

€ 

L* and   

€ 

Δp  as key variables. It is easily verified that 
no non-trivial dimensionless combination of the three is possible since the 
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mass appears in only one of them. The dimension’s equation for the last 
variable reads 

  ρ = (Δp)a ⋅(L* )
b ⋅(f )c  (4.2) 

Thus the three equations for the physical dimensions read 

    

€ 

kg :     1= a
m :   −3 = −a + b
s :       0 = −2a    - c

 (4.3) 

with the ready solution a=1, b=-2, c=-2. The density can therefore be 
expressed as 

    

€ 

ρ =
Δp

L*
2f 2

 (4.4) 

and the single 

€ 

π -group is 

    

€ 

π1 =
ρL*

2f 2

Δp
 (4.5) 

 

Figure 4.2 Hypothetical data for the similarity prediction of the Geostrophic wind. 
Different symbols may denote ‘data’ from different platforms, 
experiments, seasons, etc. 

As our variable of interest is the (Geostrophic) wind speed,   

€ 

uG , we try to find a 
scaling variable,     

€ 

uG* . The easiest choice from the pool of available variables 
is     

€ 

uG* = L*f  with the desired dimensions [    

€ 

ms−1]. Equation (4.1) then predicts 
that 
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uG

uG*

= f G(π1) , or     uG ∝ fL* ⋅f G(π1)  (4.6) 

Using atmospheric data (‘experiment’) and plotting them according to the 
above similarity prediction we will then find that    f G(π1) ∝π −1  (see Fig. 4.2). In 
other words the similarity prediction for wind speed for a certain range of   

€ 

π1 
(to be identified with the synoptic scale) would be  

    

€ 

uG ∝
1
ρf

Δp
L*

, (4.7) 

and this corresponds to the familiar result we usually obtain from scale 
analysis for the conservation equations of momentum. Figure 4.2 also shows 
how the result may look like for too small   

€ 

π1 (or too small     

€ 

L*), i.e. for local 
flows and too large   

€ 

π1 (hemispheric scales). 
According to Eq. (4.1) any mean variable a  of the ‘system’ under 
consideration, if appropriately scaled, can be described through a universal 
function   f a . Therefore, if the ‘system’ is a particular locus within the PBL (for 
example the layer near the surface under conditions of stable stratification) 
the characteristics of this variable are known anywhere in the world and at 
any time - if only the shape of this function is known and its arguments can be 
determined. In Section 4.5 the most important loci (‘scaling regimes’) will  be 
described in some detail. 

4.4 Monin-Obukhov Similarity Theory for the Surface Layer  
The probably best and most extensively treated example for the similarity 
approach is Monin and Obukhov’s (1954) theory for the Surface Layer. We 
discuss its properties in some detail in the following. 
In the Surface Layer (SL) friction plays an important role, as well as surface 
exchange of sensible heat. We may therefore choose     

€ 

u' w'o  and     

€ 

w'θ'o , the 
surface fluxes of momentum and sensible heat as relevant variables. In this 
context it is important to note that the surface values are chosen because the 
turbulent transport in this case has its origin at the surface and is therefore at 
maximum there. At the same time the turbulent fluxes do not significantly vary 
with height5 within the SL (less that 10%, and this roughly corresponds to a 
good accuracy they can experimentally be determined) so that indeed the 
surface values are characteristic for the SL. As an additional process 
buoyancy must be considered through the buoyancy parameter (    

€ 

g /θ ). Finally 
as a length scale we use the height   

€ 

z. From these four variables with three 
physical dimensions Buckingham’s Theorem predicts     

€ 

N = 4−3 = 1 
independent 

€ 

π -group. Let us then choose     

€ 

u' w'o ,     

€ 

w'θ'o  and     

€ 

g /θ  as key 

                                            
5 The SL is therefore sometimes referred to as the constant flux layer. In practice this fact also 

allows one to determine the fluxes at any height within the SL and interpret them as surface 
fluxes. 
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variables. Dimensional analysis will tell us whether this is an appropriate 
choice: If indeed a dimensionless combination of the three key variables were 
possible the dimension’s equation would read 

    

€ 

[0,0,0] = (u' w'o )a ⋅ (w'θ 'o )b ⋅ (g
θ 

)c . (4.8) 

Solving the three resulting equations for [m], [s], and [K] then yields e only 
solution   a = b = c = 0 , thus showing that indeed no dimensionless combination 
is possible. Step ‘C’ in the ‘recipe’ for the Buckingham Theorem then reads 

    

€ 

z = (u' w'o )a ⋅ (w'θ 'o )b ⋅ (g
θ 

)c  (4.9) 

and the solution is easily obtained 

    

€ 

z =
(u' w'o )3 / 2

g
θ 

w'θ'o
, or 

    

€ 

π1 =
z g
θ 

w'θ'o

(u' w'o )3 / 2
 (4.10) 

This is essentially the scaling result for the SL and every scaled mean 
variable in the SL should be expressible as a function of   

€ 

π1 alone.  
However, Monin and Obukhov (1954) took a slightly different approach in their 
original derivation by defining characteristic variables before starting the 
dimensional analysis. For friction they used the friction velocity (3.24) and 
defined a characteristic temperature scale to take into account surface heat 
exchange 

  θ* ≡ −w’θ ’o / u*  (4.11) 

Then a length scale,   

€ 

L, was introduced6 according to 

L ≡ 1
k
u*
2

θ*
(g
θ
)−1 = − 1

k
u*
3

w ’θ ’o
(g
θ
)−1 (4.12) 

With this, the dimensionless group is     

€ 

z / L. Comparing  (4.12) with (4.10) 
readily shows that the only difference in these two formulations (except for the 
sign, which only changes the sign of involved experimental parameters) is that 
the Obukhov length,   

€ 

L, includes the v. Kàrmàn constant7,     

€ 

k ≈ 0.4. From its 
definition the Obukhov length has a pole when approaching neutral conditions 
(    

€ 

w'θ'o → 0) and thus     

€ 

z / L → 0 . For convective conditions the surface heat 
flux is positive and hence     

€ 

z / L < 0 and for stable conditions the opposite is 
true. 

                                            
6 In fact this length scale was already employed in a paper by Obukhov (1946) and will be 

referred to as Obukhov Length.  
7 This constant was taken into account to ensure that the new theory of Monin and Obukhov 

(which for the first time included thermal turbulence) was compatible with the ‘standard 
theory’ in those days, valid only for neutral flows. 
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Finally, in the SL according to Monin-Obukhov similarity theory (4.1) reads 

   

a
a*

= f a(z / L)  (4.13) 

In other words, any dimensionless mean variable is predicted to be a function 
of     

€ 

z / L alone. Figure 4.3 shows that this prediction is sometimes extremely 
good, as that for the mean non-dimensional gradient for wind speed during 
the famous ‘Kansas experiment’ in the early 1970ies. For other variables, or 
when combining data from different experiments the scatter may be 
somewhat more important. 
Two aspects require explicit mentioning when discussing Monin-Obukhov 
Similarity Theory (MOST). The non-dimensional groups in (4.10) and (4.12) 
are only equal if   ′v ′wo = 0  (cf. the definition of the friction velocity, 3.24). If the 
coordinate system is rotated into the mean flow direction and if the 
assumption of horizontally homogeneous conditions holds, indeed the 
directional shear ( ′v ′wo ) vanishes and only frictional shear can be used in the 
definition of the friction velocity. Under most practical conditions, however, it is 
advisable to use the full definition for the friction velocity. Second, so far we 
have considered a dry boundary layer. If we are interested in water vapour we 
may extend the similarity analysis by taking into account an additional 
relevant process (evaporation) and hence an additional variable (usually 
taking the kinematic latent heat flux at the surface   ′w ′q o , where  ′q  is the 
water vapour mixing ratio. This then defines a characteristic humidity scale 
according to   q* = − ′w ′q / u* ). This adds an additional variable, but also an 
additional physical unit (kg8) to the problem, so that according to the approach 
as outlined in Section 4.3 we have   N = n − r = 5 − 4 = 1 and hence one non-
dimensional group (z/L) determines the turbulences state in the SL. 
 

4.5 Scaling Regimes 
In an important paper Holtslag and Nieuwstadt (1986) summarised the scaling 
regimes for the idealised (i.e., horizontally homogeneous and quasi-
stationary) ABL. Figure 4.4 shows their non-dimensional representation of the 
unstable (Fig. 4.4a) and stable (Fig. 4.4b) ABL. The regimes are represented 
as a function of non-dimensional height (    

€ 

z / h), where   

€ 

h denotes both the 
mixed layer height9 and the height of the stable boundary layer and non-
dimensional stability     

€ 

h / L, where   

€ 

L is the Obukhov length (4.12). All scaling 
regimes are identified with their names and the relevant scaling parameters. 
Note that in order to follow the practical procedure as outlined in Section 4.3 
                                            
8 Even if the mixing ratio if formally dimensionless, it measures kg of water vapor relative to 

kg of air, thus mass formally enters the problem). 
9 Standard notation for the ML height is   

€ 

zi . 



- 9 - 

to find the non-dimensional 

€ 

π -groups, the buoyancy parameter     

€ 

g /θ  must be 
added to all the scaling regimes. 

 
Figure 4.3 Non-dimensional wind shear after Businger et al. (1971). The variable 

    

€ 

ζ = z / L is just introduced for convenience. 

The ‘successful’ scaling regimes are those for which indeed scaling 
parameters are given in Fig. 4.4. This means, in the light of our discussion on 
quasi-stationarity (Section 3.1), that sometimes or often in such a height-
stability cross-section of the ABL the forcing time scale is much larger than 
the time scale that describes the change of mean profiles. In this sense this 
finding only reflects the fact that a ‘stationary description’ using scaling 
arguments can only be successful if such conditions are predominant (or at 
least often exist). In the following we discuss the most important scaling 
regimes in some detail. 

4.5.1 Surface Layer Scaling (MOST) 
Over almost the entire range of stability a surface layer (SL) is indicated in the 
lowest 10% of the ABL in Fig. 4.4. Monin-Obukhov similarity theory for the SL 
has been introduced as an example for scaling in Section 4.4. Based on 
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(4.13), i.e. the general similarity for the SL,    a a* = f a(z / L) , the non-
dimensional profile for mean wind speed10 in the SL is expressed as 

    

€ 

∂u 
∂z

kz
u*

= φm (z / L) . (4.14) 

For ideally neutral conditions (    

€ 

z / L = 0) and noting that φm(0) =1 can be 
chosen (in fact, is chosen by introducing the von Karman constant k), (4.14) 
can easily be integrated by separating the variables 

    

€ 

u (z2) −u (z1) = du 
u1

u2

∫ =
u*

k
dz
z

=
u*

k
ln(

z2

z1z1

z2

∫ ). (4.15) 

By defining a height at which the mean wind speed vanishes, i.e., 
    

€ 

u (z = zo ) ≡ 0, as the so-called roughness length, (4.15) yields the logarithmic 
wind profile for the neutral SL 

    

€ 

u (z) =
u*
k

ln( z
zo

) . (4.16) 

Indeed the roughness length is not only an elegant way to express (4.15) but 
also characterises the underlying surface. For very smooth surfaces (e.g., 
fresh snow, sand or still water) it is on the order of , for short grass or 
gravel some . With increasing size of the roughness elements, also  
increases and may be estimated at some 10% of the roughness element’s 
height (see more detailed discussion in Chapter 10). An example for this 
logarithmic wind profile is given in Fig. 1.4. 
Using the roughness length at the lower boundary, we can integrate (4.14) by 
substituting  

 
. (4.17)

 
While the integration of the lhs is straight forward a transformation of the rhs is 
performed that will become clear below: 

.
  

(4.18)
 

 

                                            
10  Note that intuitively, one would possibly seek 

   
u u* = f u (z / L)  to obtain wind information 

in the SL - and a series of experiments (step 4) would yield empirical functions similar to 
eq. (4.16) but different for each type of surface. Thus, a length scale describing the 
surface would have to be introduced. Starting with the gradient, therefore, recognizes the 
importance of friction on flow deformation and yields a more general result (and the 
surface character is introduced as a boundary condition). 

    

    

€ 

10−3m
    

€ 

10−2m   

€ 

zo

    

€ 

z / L = ζ

    

€ 

k
u∗

d # u 
0

u 
∫ =

φM ζ( )
# z zo

z
∫ d # z 

    

€ 

k
u*

u z( ) =
d " z 
" z zo

z
∫ −

1−φM ζ( )
" z zo

z
∫ d " z = ln z

zo

' 

( 
) 

* 

+ 
, −

1−φM ζ( )
" z zo

z
∫ d " z 
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Figure 4.4a Scaling regimes for (from Holtslag and Nieuwstadt, 1986) for a) 

unstable and b) stable stratification. Note the different logarithmic 
and linear scales in Figs. 4.4a and 4.4b. h denotes the boundary 
layer height and L is the Obukhov length. 
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We now write (4.18) in terms of  and note that : 

. (4.19)

 
Equation (4.19) defines the integrated form of the non-dimensional wind 
shear,   

€ 

Ψm , which can be seen to correspond to the deviation from the 
logarithmic form under non-neutral conditions. The similarity prediction for the 
mean wind speed profile in the SL therefore reads 

  
u z( ) = u∗

k
ln z

zo

⎛

⎝⎜
⎞

⎠⎟
− ΨM z / L( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 (4.20) 

For the non-dimensional gradient of wind shear   

€ 

φm , many different functions 
have been proposed based on experiments.  Högström (1988) has compared 
all the different formulations and has brought them to comparable standards 
(e.g., by using the same value for the v. Kàrmàn constant). For the unstable 
side the most general approach is 

unstable:      

€ 

φM = (1− γz / L)α , (4.21) 
where the exponent is often found to be -1/4 and   

€ 

γ ≈16  (for details see 
Högström, 1988). For any formulation of the form (4.21) the integrated form 
can be determined from (Paulson, 1970): 

unstable:   
    

€ 

ΨM (
z
L

) = 2ln
1+ x

2
# 

$ 
% 

& 

' 
( + ln

1+ x2

2

# 

$ 
% 
% 

& 

' 
( 
( 
−2 tan−1(x) +

π
2

, (4.22) 

where     

€ 

x = (1−γz / L)−α . 
For the stable SL, the early experiments (e.g., Kansas) have yielded a linear 
dependence of  φm  on stability 

stable:          

€ 

φM = 1+ βz / L , (4.23) 

and the integration (to yield   

€ 

ΨM) is straightforward. Often β ≈ 6  is found to fit 
the data quite well. A more complicated formulation has been proposed by 
Beljaars and Holtslag (1991)  

stable:       
    

€ 

φM = 1+ a
z
L

+ b
z
L

exp −d
z
L

$ 
% 
& 

' 
( 
) 
−bd

z
L

(
z
L
−

c
d

)exp −d
z
L

$ 
% 
& 

' 
( 
) 
 (4.24) 

(with     

€ 

a = 1, b = 0.667, c = 5 and d = 0.35 )() and shown to better correspond to 
field data from several sites (but see the discussion on z-less scaling below). 
The non-dimensional gradients, and their integrated forms, for potential 
temperature and specific humidity are formulated in analogy to (4.14): 

€ 

ζ   

€ 

∂z ∂ζ = L

      

€ 

k
u*

u z( ) = ln z
zo

" 

# 
$ 

% 

& 
' −

1−φM ζ( )
Lζζ o

ζ
∫

∂z
∂ζ
=L
!

dζ = ln z
zo

" 

# 
$ 

% 

& 
' −

1−φM ζ( )
ζζ o

ζ
∫ dζ

=:ΨM ζ( )
" # $ $ % $ $ 
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€ 

∂θ 
∂z

kz
θ *

= φH (z / L)    →     θ z( ) −θ zoh( ) =
θ∗
k

ln z
zoh

( 

) 
* 

+ 

, 
- −ΨH

z
L

( 

) 
* 
+ 

, 
- 

/ 

0 
1 

2 

3 
4 

∂q 
∂z

kz
q *

= φq (z / L)    →     q z( ) −q zoq( ) =
q∗
k

ln z
zoq

( 

) 
* * 

+ 

, 
- - −Ψq

z
L
( 

) 
* 
+ 

, 
- 

/ 

0 
1 
1 

2 

3 
4 
4 

 (4.25) 

Here, the characteristic variable for humidity,   q* = −w’q’o / u* , has been 
introduced through the surface flux of latent heat. Note that in general the 
‘roughness lengths’ for temperature and humidity are not equal to that for 
momentum and also these variables do not vanish by definition at this datum. 
In fact, it is very difficult to experimentally determine  zoh  and   

€ 

zoq . For heat, 
often the longwave outgoing radiation according to the law of Stefan-
Boltzmann,   LW ↑= εσTs

4 , is used where Ts corresponds to the ‘surface’ 
temperature, i.e. supposedly to that at  zoh . This, however, challenges the 
accuracy of radiation measurements, which is usually not good enough to 
determine the roughness length to within an order of magnitude (Malhi 1996; 
Calanca, 2001). For moisture, on the other hand it is usually assumed that the 
air is saturated at the surface so that 

	
zoq  can be determined as the height 

where saturation occurs (for what we again need the ‘surface temperature’).  
Over homogeneous surfaces,  zoh  is often found to be about an order of 
magnitude smaller than the roughness length for momentum (Malhi 1996, 
Verma 1989). There is, however, a pronounced impact of surface character 
(‘bluff body’ type roughness as for sand grains vs. ‘permeable roughness’ like 
grass or other vegetation), which is often expressed in terms of a dependence 
of 		ln(zo / zoh)  on the roughness Reynolds number, 		Re*= zou* /υ (e.g., Verma 
1989; Sun 1999). The sparse available studies suggest only small differences 
between the roughness lengths for heat and moisture (Verma 1989). 
 
The standard deviation of vertical velocity is found to obey the relation 

unstable: 
    

€ 

σw
u*

= 1.3(1−3 z
L

)1/ 3 . (4.26)  

Under stable conditions, large scatter is usually observed (mainly due to 
generally weak turbulence and correspondingly large experimental 
uncertainty). It is often concluded that     

€ 

σw /u* is essentially constant at 
approximately 1.3, i.e. does not vary with     

€ 

z / L. This is in line with the local 
scaling approach as discussed below. 
SL formulations have also been proposed for the horizontal velocity standard 
deviations but the scatter is usually such that these examples might rather be 
used in a textbook to show how ‘failure’ of the prediction looks like (see 
Section 4.3 – step 4). Still, there is common sense that both these variables 
assume a characteristic value at neutrality: 
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Neutral: 
    

€ 

σv
u*

= 1.9, σu
u*

= 2.5 . (4.27)  

The standard deviation of scalars (such as potential temperature or specific 
humidity), may be represented by the general relation (Sfyri et al. 2017) 

  

σ s

s*

= −as(bs − cs

z
L

)ds + es , (4.28)  

where ‘s’ is the scalar (such as potential temperature,  s = θ  or specific 
humidity,  s = q ). Depending on the variable and the stability range, some of 
the parameters can be expected to be zero or one. Others, such as  dθ  for the 
unstable side, is expected to amount to -1/3 due to the limiting behaviour for 
for , i.e. in free convection (e.g., Wyngaard 2010). Figure 4.5 
shows scaled temperature and humidity data from the well-known reference 
site in Cabauw (NL) according to Sfyri et al (2017).  
It should be noted that the fit to eq. (4.28) is made separately for different 
stability ranges on the unstable temperature data. The unstable range (
  z / L < −0.05 ) yields parameters close to those obtained from the ‘classical’ 
experiments (e.g., Tillmann, 1972), i.e.,   aθ = 0.99, bθ = 0.063,    cθ = 1, 

  dθ = −1/ 3,   eθ = 0 ). For the near-neutral range (  −0.05 < z / L < 0 ), scaling with 

 θ*  suggests that a constant ‘neutral’ value is approached for   z / L → 0  - as 
suggested by Tillmann, (1972) - only if the temperature variance goes to zero 
at the same pace as the heat flux does. Based on a simplified temperature 
variance budget, Tampieri et al. (2009), suggested an exponent   dθ ≈ −1, 
which fits the data well on the unstable side (Fig. 4.5, top left), while the best 
fit yields   dθ = −1.4  for the stable temperature data (Sfyri et al. 2017).  

On the stable side the scatter for the scaled temperature fluctuations is 
relatively large and outside the near-neutral range a constant non-dimensional 
temperature fluctuation seems to be approached. 
Since the latent heat flux (and hence   q* ) does not necessarily go to zero 
under neutral conditions, so that   σ q / q*  approaches a constant value (≈ 2.75). 
On the stable side, the scatter is quite substantial due to generally small 
values (and hence large experimental uncertainty) and no dependence on 
  z / L  is observed. 
We will encounter many more SL predictions especially when dealing with 
spectra (Chapter 7) and when discussing departures therefrom over complex 
surfaces. 

  z / L → −∞
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Figure 4.5 Dimensionless standard deviation of potential temperature (top row) 

and specific humidity (lower row) from 11 months of measurements at 
an almost perfectly homogeneous and flat site (in Cabauw, NL, 
Beljaars and Bosveld, 1997). Left column unstable and right column 
stable data. 

 
Φθ = σθ / |θ* |  and 

  
Φqq =σ q / q

*
. Purple lines denote a fit 

according to eq. (4.28). For unstable temperature data (top left) the fit 
is performed separately for near-neutrally unstable (  −0.05 < z / L < 0 ) 
and unstable (  z / L < −0.05 ) data - with the former being shown as a 
dashed line. Figure slightly modified from Sfyri et al. (2017). 

4.5.2 Local scaling for the SBL 
Due to the suppression of turbulence under stable conditions (see Table 1.1) 
only small eddies are produced with a limited reach. Within the SL, still Monin-
Obukhov scaling is applicable. Higher up the turbulence scales with the height 
  

€ 

z and the local fluxes of momentum     

€ 

τ i 3 and sensible heat     

€ 

w'θ ' rather than 
with the corresponding surface fluxes. This is known as Local Scaling and has 
first been proposed by Nieuwstadt (1984). In effect, the local scaling (LS) 
approach has two elements. The first is a local Obukhov length 

    

€ 

Λ =
τ3 /2

k g
θ 

w'θ '
, (4.29) 

which is the local equivalent to (4.12) with τ = (u’w’
2
+v ’w’

2
)1/2  replacing     

€ 

u*
2 

and the local heat flux the surface heat flux. In the local scaling regime any 
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scaled mean variable is then expected to be dependent only on     

€ 

z / Λ. In other 
words the SL expression for scaling in the SL (4.13) becomes     

€ 

a a* = fa(z / Λ) 
for the Local Scaling regime. Figure 4.6 shows the non-dimensional gradient 
of mean wind speed for a data set from a ‘long-lived’ SBL on the Greenland 
ice sheet. On the left panel SL, scaling is seen to lead to quite substantial 
scatter (except for the lowest measurement heights). Local scaling as 
displayed on the right panel is much better suited for this data set and the 
local equivalent of (4.24) fits the data quite well. 
 

 
Figure 4.6 Non-dimensional wind shear for stable conditions. Different symbols 

refer to average values for bins of stability from different measurement 
heights (which should all fall onto the same line according to scaling 
principles). Vertical bars denote the standard deviation off individual 
data. The solid line corresponds to Eq. (4.23) with   

€ 

β = 6 and the 
dashed line to Eq. (4.24). Left panel: SL scaling, right panel: LS. From 
Forrer and Rotach (1997). 

In order to make this concept useful we therefore secondly need profiles of 
the turbulent fluxes. These may be obtained simply from observations or, 
theoretically, under quite stringent conditions: horizontally homogeneous, 
quasi stationary, with a constant cooling rate and the closure assumption11 
    

€ 

Ri = Rf = const. = 0.2. For these conditions, Nieuwstadt (1984) derived 

τ / τ o = (1− z / h)
3/2

w ’θ ’ /w ’θ ’o = (1− z / h).
 (4.30) 

In Fig. 1.11 data from the Greenland ice sheet (where at least horizontal 
homogeneity and the ‘constant’ cooling rate are no serious problems) are 
shown to follow this prediction on average.  

                                            
11 ‘Closures’ will be discussed in Chapter 5. Ri and Rf are the Gradient and Flux Richardson 
Numbers, respectively, and will be introduced in Chapter 6. 
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For large values of     

€ 

z / Λ the weak (since suppressed) turbulence will no 
longer allow for an efficient exchange and the dependence on   

€ 

z  is expected 
to disappear due to the turbulence no longer being able to maintain the 
exchange with the surface. In terms of Local Scaling this means that the 
scaled variables will approach a constant value for large     

€ 

z / Λ (Nieuwstadt, 
1984, Grachev et al. 2013) and the corresponding region is called z-less 
scaling (see Fig. 4.4b). Variables, for which their non-dimensionalization does 
not contain the height (e.g., the standard deviation of a velocity component) 
therefore cease to vary with     

€ 

z / Λ (Figure 4.7), while for non-dimensional 
gradients (where the height is used to non-dimensionalize, see eq. (4.14)) this 
leads to a linear stability dependence (e.g., 		φm = βz /Λ , see eq. (4.23), 
Grachev et al. 2013). This suggests that the form (4.23) for the non-
dimensional velocity gradient is consistent with z-less scaling. Babic et al. 
(2016) find that departure from z-less scaling (and hence linear dependence 
of 	φm  on     

€ 

z / Λ) is associated with small-scale turbulence, which in turn is 

found for Flux Richardson numbers 
		
Rf > 0.25  (see Chapter 6 for a definition of 

	
Rf . 

 
Fig 4.7 Local scaling prediction (solid line) and observations for σw/u* under 

stable conditions. From Nieuwstadt (1984).  

4.5.3 Mixed Layer scaling 
Above the SL on the unstable side, Fig. 4.4a reveals the existence of another 
‘successful’ scaling regime, the Mixed Layer (ML). A formal treatment as in 
Section 4.3 would use the surface heat flux     

€ 

w'θ 'o , the height of the layer itself 
(the so-called mixed layer height   

€ 

zi ), the buoyancy parameter     

€ 

g /θ  and the 
height   

€ 

z  as variables to find the non-dimensional height     

€ 

z / zi  as the one and 
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only ‘

€ 

π -group’. Hence, every carefully scaled variable in the ML is expected to 
be a function of     

€ 

z / zi  alone (see the synthetic example in Fig. 4.1). This 
scaling regime originally goes back to the work of Deardorff (1970) among 
others. For a scaling velocity dimensional analysis yields 

    

€ 

w* = (g
θ 

w'θ'ozi )
1/ 3 , (4.31) 

the so-called convective velocity scale.  
While the ML leads – due to strong turbulence and hence mixing – to 
essentially vanishing vertical gradients in mean variables (see Fig. 1.5 as an 
example) it exhibits characteristic profiles (dependence on     

€ 

z / zi ) for higher 
order moments. Figure 1.6 shows typical profiles of the sensible heat flux with 
the close to linear behaviour from the surface up to the Entrainment Layer. 
The characteristic profile of the skewness of the vertical velocity component in 
the ML is depicted in Fig. 4.8. The third order moment is not only different 
from zero due to strong thermals and compensating subsidence (see Fig. 1.8 
and discussion there), but also the skewness is found to be strongly height 
dependent following the ML scaling prediction. Similar behaviour can be found 
for many higher order moments in the ML (see Caughey, 1982).  

 
Figure 4.8 ML scaling for the skewness of the vertical velocity component. Data 

from different full-scale and water tank experiments (different symbols). 
From Rotach et al. (1996). The solid and dashed line represent two 
different analytical formulations. 
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