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3 Statistical Treatment of Turbulence 

3.1 Averaging, Stationarity and Homogeneity 
Due to the chaotic nature of turbulent flows it is impractical to try to describe in 
detail every single trajectory in a turbulent flow. Even if this restriction is a 
matter of CPU time and one particular realisation of a turbulent flow field can 
in principle be obtained from numerical simulation of sufficiently high spatial 
and temporal resolution, alternative approaches must be sought. The most 
powerful of these is to consider turbulence variables as a realisation of a 
stochastic process. Thus, rather than looking at the variable’s value, its 
probability density function (pdf),   

€ 

P , which contains information on the 
statistical distribution of occurrences of particular values, is considered. Figure 
3.1 shows what a measurement of a variable at sufficiently high frequency 
yields if placed in a turbulent flow. Clearly, it can be seen that measurement 
values change at very high rate and that both the mean value and the 
variance change slowly in time with respect to the time scale of turbulence. If 
  

€ 

Pa  is the probability that variable   

€ 

a assumes a certain value, the average can 
be determined according to 

  

€ 

a = aPa
−∞

∞
∫ da. (3.1) 

Here, the overbar is introduced to refer to an average. In other words, each 
possible value is considered with its probability of occurrence and the 
integration goes over the entire phase space. In general, we may estimate the 
average of any function of variable x according to 

    

€ 

f (a) = f (a)Pa
−∞

∞
∫ da. (3.2) 

A pdf is defined through all its n moments: 

  

€ 

an = anPa
−∞

∞
∫ da, (3.3) 

where n=0 corresponds to the normalisation of the pdf, n=1 to the average 
and so on. Useful measures are further the central moments, defined as 

    

€ 

(a−a )n = (a−a )nPa
−∞

∞
∫ dx , (3.4) 

with n=0 again corresponding to the norm. n=1 corresponds to the average of 
the fluctuations around the mean and is thus zero by definition. The variance 
is obtained for n=2 and the skewness for n=3, which becomes zero for a 
symmetric distribution. Finally, n=4 corresponds to the so-called flatness of 
the pdf. 
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Figure 3.1 Time series of wind speed component in a turbulent flow (from a 

measurement at ‘ETH camp’ on the Greenland ice sheet). Each row 
corresponds to 1 hr worth of data. 

The best-known pdf is certainly a Gaussian or normal distribution, for which 
the skewness is zero and the flatness equals 3 (all other higher moments 
vanish). Many turbulence variables are indeed close to normally distributed – 
and even more often assumed to be so. Still, some important processes in the 
ABL lead to non-Gaussian distributions. For example, in a CBL usually strong 
updrafts (thermals) are present but they occupy only a relatively small portion 
of the surface. Over the remainder of the area compensating negative vertical 
wind is prevailing. Thus, the most likely value (i.e., the median) observed for w 
is slightly negative and large negative values are unlikely. Large positive 
values, on the other hand, occur more often (in the thermals) and the pdf of w 
is positively skewed (Fig. 3.2).  
3.1.1 Ensemble averages 
What we really want when measuring or modelling a turbulence variable is to 
obtain information on the processes, which lead to such a time series – but 
not exactly the one we obtained. We could have chosen our site a few 
centimetres to one side or we could have started the observation a few 
seconds later. Therefore, the average we are truly interested in is that we 
would obtain if we had the possibility to repeat our measurement (or 
simulation) over all possible realisations of the flow. This is called an 
ensemble average. Formally, we may write for the ensemble average of 
variable   

€ 

a 

      

€ 

a e =
1
N

ai
i =1

N
∑ (

 
x ,t). (3.5) 

Here, 	ai  denotes an individual realization of variable a as a function of space 
and time, and N is the number of realization. Unfortunately, in the 
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atmosphere, as in any environmental system, N goes to infinity and thus a 
true ensemble average can hardly be obtained. The so-called Ergodic 
hypothesis states that under certain conditions (see Panofsky and Dutton 
1984, p. 61ff for details) a spatial average,   

€ 

a x  or a temporal average   

€ 

a t  can 
be taken as a surrogate for the ensemble average. It is beyond the scope of 
this book to detail all these conditions, but one must be mentioned: 
stationarity. Implicitly, the Ergodic hypothesis is always invoked when 
measuring or modelling1 turbulence variables in order to study processes in 
turbulent flows. 
 

 
Figure 3.2 Skewed pdf of the vertical velocity in a CBL. Different lines for different 

non-dimensional heights (see labels). From Lamb (1982). 

Over a sufficiently homogeneous surface, S, a spatial average may be 
defined according to 

      

€ 

a x =
1
S

a(
 
x ,t)ds

S
∫∫ . (3.6) 

Similarly, a temporal average over a stationary period T can be obtained from 

      

€ 

a t =
1
T

a(
 
x ,t)dt

t1

t1+T
∫ . (3.7) 

The spatial average in the ensemble sense is what is usually desired in order 
to investigate processes leading to the particular structure of turbulence in the 
environment under consideration. However, not only due to the requirement of 
spatial homogeneity this is usually difficult to obtain. Also, a large number of 
                                            
1 No Ergodic hypothesis is necessary, of course, if Direct Numerical Simulation (DNS) is 

employed, i.e. if a flow is simulated resolving all scales (down to the smallest) of turbulence. 
In such a case, the model simulation yields one possible realisation of the flow and may, in 
principle be repeated manifold. The same is true, to a certain degree, for Large Eddy 
Simulation, in which scales down to a certain limiting size are resolved. 
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instruments in the field are necessary. In recent time, with turbulence 
instrumentation becoming more easily available, highly sophisticated spatial 
arrangements of instruments are employed (e.g., Horst et al. 2004), often in 
connection with testing very sophisticated numerical models. Still, what we 
can more easily obtain is a temporal average from a single instrument. Thus 
very often a single instrument reading is employed to get   

€ 

a t  and the result is 
interpreted as the desired ensemble average   

€ 

a e  or simply   

€ 

a . Some useful 
rules for averaging are summarised in Table 3.1. 
 

Table 3.1: Useful rules for averaging 

A, B are variables, c is a constant 

  

€ 

c = c   

  

€ 

c ⋅ A( ) = c ⋅ A   

  

€ 

A ( ) = A  An average behaves like a constant 

  

€ 

A ⋅B( ) = A ⋅B  
 

  

€ 

A ⋅B( ) ≠ A ⋅B 
 

The average of a product is not, in general, the 
product of the averages 

  

€ 

A + B( ) = A + B  
 

  

€ 

∂A
∂x

# 

$ 
% 

& 

' 
( =

∂A 
∂x  

This is an important property and derives from the 
Leibnitz theorem. 

 
For the above concepts, stationarity has been assumed as a prerequisite. 
How can this be defined? Consider the average temporal correlation of a 
fluctuating variable   

€ 

a2 with itself 

    

€ 

a(t) ⋅a(t ' ) =:Ca (τ,t), (3.8) 

where   

€ 

Ca is called the auto-covariance function,     

€ 

τ = t − t ' and t is the absolute 
time. For stationary turbulence   

€ 

Ca must not depend on t, i.e. 

    

€ 

a(t) ⋅a(t ' ) =:Ca (τ ) , (3.9) 

and this must be true for any time difference 

€ 

τ . Thus it must also be valid for 
  

€ 

τ = 0 and in this case (3.9) describes nothing else than the variance. It follows 
that if the variance is not dependent on t, this is a condition for stationarity. 
However, is this sufficient to define stationarity? We have stated above that 
the pdf of a turbulence variable is defined through all its moments. Hence in 
principle we have to repeat the above procedure for all moments to find: a 

                                            
2 That is, for the time being, the instantaneous value of A of which the mean value   

€ 

A  is 
subtracted. Later (in Section 3.3) we will introduce this procedure as Reynolds decomposition. 
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time series is stationary, if all its moments do not depend on t. Clearly, in 
practice only the first few (often up to the second) are tested in order to 
ensure stationarity. 
However, in Chapter 2 we have identified the dissipative nature of turbulence 
as one of the ingredients of the ‘turbulence syndrome’. Thus turbulence is 
never truly stationary due to the continuous production and dissipation of 
turbulent kinetic energy. A practical solution is therefore to introduce the 
concept of quasi-stationarity. For this we consider two time scales 
(Nieuwstadt and Duynkerke 1996). The first,   

€ 

Tf , is the forcing time scale, 
which describes the external processes driving the boundary layer flow. Often, 
it may be assumed that  

    

€ 

Tf ∝ f −1, (3.10) 

where f is the Coriolis parameter, thus reflecting the fact that some external 
forcing on the order of the Geostrophic wind is present. In mid-latitudes f is 
roughly 10-4 s-1 and   

€ 

Tf  becomes some 3 hours. A second time scale is   

€ 

Tm  
reflecting the time it takes to change a mean profile due to a change in the 
boundary conditions. Now, if  

  

€ 

Tm << Tf  (3.11) 

the process is called quasi-stationary. For example for the surface layer, a 
characteristic velocity     

€ 

u*  has been introduced and later we will learn that     

€ 

u*  is 
on the order of a few tenth of ms-1. If the height z is considered as a length 
scale3,   

€ 

Tm  can be estimated for the surface layer using simple dimensional 
arguments,     

€ 

Tm = z /u* . And it becomes a few tens or hundreds of seconds. 
Thus, according to (3.11) turbulence in the SL may be quasi-stationary, even 
if this is no guarantee that it really is under any circumstances. 
Considering spatial homogeneity of a turbulent flow the same arguments as 
for stationarity can be invoked – simply considering the spatial auto-
covariance function instead of (3.8) and, in principle, investigating it up to all 
the moments of the pdf. Thus, homogeneity is nothing else than stationarity in 
space. This is also obvious when considering surfaces of different types (Fig. 
3.3). Over a homogeneous surface, a stationary flow may establish even 
close to the surface (i.e., so close to the roughness elements that the flow is 
dynamically influenced by them) while the continuously changing surface 
forcing over an truly inhomogeneous surface (random and largely different 
roughness elements) will not allow the stationarity conditions to be fulfilled. 
Clearly, the mean advection velocity (mean wind speed) plays a role herein as 
it determines the time scales the flow needs to travel from one surface type to 
another. At a certain distance from the surface the impact of different 
roughness elements will have dispersed through turbulent mixing into the 
overall-response of this type of surface. This distance is often referred to as 
blending height. 

                                            
3 This choice will be substantiated in Chapter 4. 
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It is important to note here that homogeneity is a concept in boundary layer 
meteorology that is only invoked for the horizontal dimensions. By ‘definition’ 
the vertical dimension is expected to be inhomogeneous due to the presence 
of the Earth’s surface and hence the existence of the boundary layer with its 
very characteristics. 

  
Figure 3.3 Over a regular (horizontally homogeneous) surface a stationary flow 

can establish (left), while the flow has to readjust on each of the 
varying roughness elements and will thus not become stationary 
(right). 

3.2 Taylor Hypothesis 
Considering the various types of averages above (ensemble vs. time vs. 
space) we often have the situation that we are, in fact, interested in the 
(spatial) structure of turbulence but we have at hand a time series from 
possibly only one instrument (or, alternatively a modelled time series). In other 
words the problem is how to ‘observe’ the spatial structure without truly 
spatially resolved information. In 1838 Geoffrey I. Taylor formulated his 
famous hypothesis as a way out of this dilemma: If the turbulence can be 
assumed to be ‘frozen’ during the time it travels across the point of 
observation, the temporal information can easily be converted into spatial 
information. Figure 3.4 illustrates this concept by considering an idealised 
eddy as it passes a hypothetical sensor. 
Mathematically, Taylor’s hypothesis is most conveniently expressed using the 
total (Lagrangian) time derivative for a variable 

€ 

ζ : 

		Dζ /Dt = 0  (3.12) 

Expanding this equation into its components 

		

Dζ
Dt

= ∂ζ
∂t

+ ∂ζ
∂ x

∂ x
∂t

+ ∂ζ
∂y

∂y
∂t

+ ∂ζ
∂ z

∂ z
∂t

= 0  (3.13) 

and identifying the time derivatives of the coordinate axes as the velocity 
components (u, v, w) yields a mathematical formulation of Taylor’s hypothesis 

∂ζ
∂t

= −
!
v ⋅ ∇ζ , (3.14) 
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where ∇
 
denotes the gradient operator. Thus, if the turbulence is ‘frozen’ the 

local temporal change in any variable 

€ 

ζ  manifests itself through the advection 
of an eddy across the sensor. In other words, Eq. (3.14) suggests a simple 
transformation of variables characterising the turbulence in time (  

€ 

Vt ) to those 
characterising it in space (  

€ 

Vxi
) using the mean wind speed: 

    

€ 

(Vx ,Vy ,Vz) = (u ,v ,w ) ⋅Vt . 

 

 

 
 

Figure 3.4 Illustration of Taylor’s Hypothesis (adapted after Stull 1988).  

As an example we may consider the information one can extract from 
turbulence spectra (Chapter 7). From a measured time series the spectral 
distribution of energy can be obtained (see, e.g., Fig. 7.5) and hence     

€ 

fmax, the 
frequency of maximum spectral power. However, often the corresponding 
wave length,   

€ 

λmax, is of interest because it is related to the size of the 
dominant eddies. Taylor’s hypothesis then yields for the one-dimensional 
spectrum in mean wind direction 

    

€ 

λmax = u / fmax, (3.15) 

having noted that the frequency is inversely related to time. 
Under what circumstance is Taylor’s hypothesis applicable in real boundary 
layer flows? In general, the characteristic time over which turbulent eddies 
change due to the forcing,   

€ 

Tf , should be much larger than the travel ‘across 
the sensor’, or 
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€ 

Tf >> Le /u . (3.16) 

Here,   

€ 

Le  is a characteristic length scale of an eddy. In practice, from 
measurements a simple rule-of-the-thumb for the validity of Taylor’s 
hypothesis has been devised as  

    

€ 

σu /u < 0.5 , (3.17) 

where   

€ 

σu (i.e., the standard deviation) represents the activity of turbulence 
and 	u  the mean advection velocity. 

3.3 Reynolds Decomposition 
In the previous section the averaging operator has been introduced without 
explicitly stating which part of the variability is considered as turbulence and 
which as ‘mean flow’. In other words, we have not dealt with the question of 
averaging times on the one hand, and neither with the separation of 
turbulence and mean flow, on the other hand. Inspecting Fig. 3.1 for example 
leads to the question of how to separate these different processes in a real 
time series. Osborne Reynolds has introduced a simple approach that is ever 
since referred to as Reynolds Decomposition to address the second question. 
In this approach every variable a is formally separated in to a mean (  

€ 

a ) and a 
fluctuating (turbulent) part (a’) according to 

    

€ 

a = a + a' . (3.18) 

(Note that this formal decomposition does not alter the information in the 
signal in any way). However, the Reynolds Decomposition is only useful if 
also the first question can be answered satisfactorily. Here, the nature of the 
energy distribution in many natural flows helps to find an answer. Figure 3.5 
shows the energy spectrum4 as recorded over many days by a turbulence 
probe. Clearly, it can be seen that a local minimum in energy is present 
between local maxima at both the high and low frequency ends of the 
spectrum. This minimum is referred to as the spectral gap. On the low 
frequency end the variability due to the daily cycle and longer-term 
developments (e.g., changing weather conditions) dominate the spectrum, 
while the high-frequency variability beyond the spectral gap can be identified 
with turbulence. The presence of a spectral gap thus allows the separation of 
scales (‘mean flow’ vs. ‘turbulence’) and the application of (3.18). Often, it 
occurs at a frequency corresponding to a period of some, say, fifteen minutes 
to a couple of hours.  In practice, therefore, one measures (or models) a high-
frequency time series, of a and then calculates   

€ 

a  by choosing an appropriate 
averaging time. The turbulent fluctuations  (a’) can then be determined by 
(3.18). 
Table 3.2 compiles the calculus rules for the Reynolds Decomposition for the 
example of two variables a and b. While most of these rules are obvious it is 
instructive to note that the mean product of the two variables is not equal to 
the simple product of the two mean variables. In general, the average of the 
                                            
4 See Chapter 7 for details. 
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product of the two fluctuating parts     

€ 

a'b'  does not vanish thus indicating that 
the two fluctuations are correlated. In turbulent flows, and especially close to 
the ground, these covariances are often larger in magnitude than the 
corresponding product of the mean variables and thus dominate the flow. 

 
Figure 3.5 Illustration of spectral gap – mean spectral density distribution over a 

seven hours period at a site in a Alpine valley at z/h=1.74 over a forest 
stand. From van Gorsel (2003).  

 

3.4 Covariances and their Physical Meaning 
Transport in a physical system can most generally be described as the 
product of a transport velocity with the transported quantity. In atmospheric 
(fluid dynamical) systems this is usually called advection. When introducing 
the concept of Reynolds Decomposition to the conservation equations in 
Chapter 5 we will face the fact that the advection terms (e.g., ui∂θ j ∂x j

5
 in the 

energy conservation equation, where 

€ 

θ  denotes the potential temperature) 
give rise to additional covariance terms as those in Table 3.2. These can be 
interpreted as describing turbulent transport (or flux) terms as outlined in the 
following. 
To understand transport in general, consider a tube as sketched in Fig. 3.6 
with length   

€ 

Δx , volume   

€ 

V  and the head area   

€ 

ΔA . Let 

€ 

χ  be a specific quantity, 
such as specific humidity. We then may define the integral quantity according 
to 

  

€ 

Χ = ρχ
V
∫∫∫ dV . If 

€ 

χ  is well-mixed within the volume the transport through 

area   

€ 

ΔA  becomes 
                                            
5 Note that the advection term is only non-zero if the transported quantity changes in flow 
direction. In the given example, if θ  does not change in j-direction, there is transport of 
sensible heat in this direction, but it does not change the temperature (because air of a 
certain temperature is transported into an area with the same temperature). 
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€ 

FΧ =
Χ

ΔAΔt
=
ρχV
ΔAΔt

=
ρχΔAΔx
ΔAΔt

= ρχ
Δx
Δt

 (3.19) 

 
 Table 3.2: Calculus for Reynolds Decomposition 

 a and b are variables, for which: a = a + ! a  ; b = b + ! b  

1) ! a = 0   By definition 
2) a( ) = a + ! a ( ) = a  By definition and 1) 

3) b ⋅ " a ( ) = b ⋅ " a = 0  The average of a product involving a primed 
variable vanishes 

4) a ⋅b( ) = a + " a ( ) ⋅ b + " b ( )
= a ⋅b + " a " b  

The covariance is not necessarily zero 

5) a2 = a 2 + ! a 2  
The second term on the rhs corresponds to the  
Second central moment, i.e. the variance 

 
 

 
Figure 3.6 Illustration for the concept of transport in a fluid. 

Thus in the limit of infinitesimal increments (and expanding to three 
dimensions) a flux of a quantity 

€ 

χ  can most generally be described as  

    

€ 

 
F χ = ρχ

 
v . (3.20) 

(i.e., the product of the fluid’s density with the specific quantity and the 
transport velocity). The most important covariances that appear when 
applying the Reynolds Decomposition into the conservation equations in 
Chapter 5 are always associated with the vertical velocity component, viz. 

    

€ 

w'θ ',     

€ 

w'q' and     

€ 

u'w',  (3.21) 
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i.e., the turbulent fluxes of sensible heat, latent heat (q denoting the specific 
humidity) and momentum, respectively. Thus, if for example the covariance 
between the (fluctuating) vertical velocity component and the (fluctuating) 
potential temperature does not vanish a turbulent flow can transport sensible 
heat in the vertical even without a mean vertical velocity. Experience shows 
that indeed this is the case especially close to the surface (or more generally, 
within the PBL) so that the terms including the covariances of Eq. (3.21) even 
dominate the respective conservation equations. 

 
Figure 3.7 Sketch of a turbulent flow with the shear on the left producing 

turbulence. Two ‘eddies’ (‘1’ and ‘2’) are outlined.  

Consider a turbulent flow as sketched in Fig. 3.7. The turbulence is 
symbolised as curved velocity vectors denoting instantaneous turbulent 
eddies of different size. The mean temperature stratification is also indicated. 
Turbulent eddy labelled 1 is an example of a downward fluctuation, and due to 
the mean temperature stratification it is likely to transport air that is relatively 
warm into a region that is colder. On the other hand eddy 2 represents a 
typical upward fluctuation and brings relatively cool air into a region of larger 
potential temperature. Eddy 1 transports heat downwards, while eddy 2 
transports heat deficit upwards. In our coordinate system with the positive z-
axis pointing upward both eddies contribute with a negative instantaneous flux 
of sensible heat. Averaged over many such eddies (i.e., a certain averaging 
period) the covariance between     

€ 

w' and   

€ 

θ' is negative (in this example!) or, in 
other words, heat is transported towards the surface through turbulent 
transport. This is illustrated in Fig. 3.8. In general, every combination is 
possible between the fluctuations of   

€ 

w and 

€ 

θ  in our example leading to the 
four ‘quadrants’ of Fig. 3.9. Only if – due, for example, to the mean gradient in 
one of the variables as in the example – either one of the diagonals 
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dominates the other a non-zero average covariance results leading to a net 
transport of the considered scalar. 
So far, we have only considered the covariances alone (Eq. 3.20). These are 
called kinematic fluxes. They are converted into physical units through 

    

€ 

ρcp w'θ ' =: H = turbulent flux of sensible heat in     

€ 

Wm−2  (  

€ 

cp= specific heat of air 
at constant pressure); 

    

€ 

ρLv w'q' =: LvE = turbulent flux of latent heat in     

€ 

Wm−2  (  

€ 

Lv= latent heat of 
condensation); 

    

€ 

ρu'w' =: M = turbulent flux of momentum in     

€ 

Nm−2 . 
The momentum flux is special in as the transported ‘scalar’ is in fact also a 
velocity component. When applying the concept of Reynolds Decomposition 
and averaging to the product of two velocities (as it appears in the 
conservation equation for momentum) one in fact obtains a tensor 
 

    

€ 

 cov(ui ,uj ) = " u i " u j =

" u " u " u " v " u " w 
" v " u " v " v " v " w 
" w " u " w " v " w " w 

# 

$ 
% 

& 
% 

' 

( 
% 

) 
% 

 (3.22) 

It can easily be seen that the diagonal elements correspond to the velocity 
variances.  
What was called ‘momentum flux’ above thus corresponds only to one 
element of this tensor. Since both fluctuating variables in this tensor element 
are velocity components one is tempted to ask: does this now correspond to 
turbulent transport of horizontal momentum in the vertical or rather to 
turbulent transport of vertical momentum in the horizontal (along wind) 
direction? To answer this question it is instructive to consider the physical 
effect these two covariances represent on an idealised ‘fluid element’ as 
sketched in Fig. 3.10. If an ‘upward fluctuation’ (    

€ 

w'> 0) is transported towards 
the side of the fluid element (Fig. 3.10a) the result is a deformation of the 
original fluid element (Fig. 3.10b). Similarly, if a gust (    

€ 

u'> 0) is transported 
towards the fluid element from, say, above (Fig. 3.10c) a deformation results 
(Fig. 3.10d). Both these deformations are equal in principle and correspond to 
a stretching of the fluid element in the x-z plane (Fig. 3.10e). Thus     

€ 

u'w' and 
    

€ 

w'u' are equal in their effect and express the shear stress the fluid element 
experiences and hence the tensor in (3.22) is symmetric (only 6 independent 
elements – with the same arguments for the other off-diagonal element pairs). 



- 37 - 

 
Figure 3.8 Time series of   

€ 

θ' (upper panel),     

€ 

w' (middle panel) and the 
(instantaneous)   

€ 

w'θ'  (lower panel). Dashed vertical lines (and dark 
shading) connect periods of interest.  Adapted from Rotach (1993). 

A Reynolds stress tensor (or shear stress tensor) is therefore defined 
according to 

τ ij ≡ −ρui ’uj’ . (3.23) 

The minus sign is thereby introduced in order to assure that the most 
important element (  

€ 

τ13) is positive: due to friction the profile of mean wind 
speed close to the surface always obeys     

€ 

∂u ∂z > 0  (vanishing mean wind 
speed at the surface) and hence     

€ 

u'w' < 0 (cf. the example of Fig. 3.7).  
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Figure 3.9 Illustration of the four quadrants with the ‘plus’ and ‘minus’ signs 

denoting the potential temperature and vertical velocity fluctuations 
respectively. 

In summary, the surface friction leads to a permanent deformation (shear 
stress) of the fluid elements close to the surface and the mean velocity profile 
is maintained through turbulent transport of momentum towards the surface. 
Due to the importance of this processes in the generation of mechanical 
turbulence a characteristic velocity is defined according to 

u* ≡ (u’w’o)
2 + (v ’w’o)

2"
#

$
%
1/4

 (3.24) 

and called friction velocity. Here, the subscript ‘o’ denotes the surface value. 

3.5 Other Turbulence Variables  
The three diagonal elements in (3.22) have been identified as the velocity 
variances above. They in fact represent the normal stresses on the ‘fluid 
element’ of Fig. 3.10. Clearly, they could be interpreted as ‘transport of   

€ 

ui  in 
direction   

€ 

xi . More important, however is their meaning in terms of energy. The 

kinetic energy is most generally defined as Ekin =
ρ
2
(u2 +v 2 +w 2) . Applying the 

Reynolds Decomposition and averaging then leads to the turbulent kinetic 
energy (TKE): 

TKE =
1
2
ρ !uii

2 .  (3.25) 

Also from the velocity variances the turbulent intensities are defined 

  

€ 

Ik =
σuk

u 
,  (3.26) 
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where   

€ 

σuk
 is the standard deviation of the respective velocity component. 

 

 
Figure 3.10 Cubes illustrating horizontal transport of vertical velocity fluctuation (a) 

and resulting deformation (b); transport of vertical velocity fluctuation 
(c) and resulting deformation (d); equivalence of b) and d) in e). 
Modified after Stull (1988) 

The auto correlation function   

€ 

Ra  of a variable   

€ 

a describes the correlation of 
this variable with itself as a function of time difference or distance in space. 
For example, the temporal auto-correlation function is defined 

    

€ 

Ra(t,τ ) =: a' (t) ⋅a'(t + τ)

a'2(t)
. (3.27) 

Here,   

€ 

t  denotes the time and 

€ 

τ  the time difference. From this definition it is 
clear that     

€ 

Ra (t,0) = 1. Furthermore in stationary turbulence   

€ 

Ra  is also 
independent of   

€ 

t . In general6,   

€ 

Ra  decreases with increasing 

€ 

τ  (Fig. 3.11). 
From (3.27) the so-called integral time scale for variable   

€ 

a is defined after 

Ta(τ ) ≡ Ra
0

∞

∫ (τ )dτ . (3.28) 

Figure 3.11 shows that the integral time scale is measure for the ‘memory’ of 
the turbulence: the lager   

€ 

Ta  the longer at least some correlation is maintained 
for the considered variable. 
                                            
6 If we consider turbulence time scales – and exclude periodic phenomena (such as waves) 
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An often-used model approach for the auto-correlation function reads 

    

€ 

Ra (τ) = exp −τ /Ta{ } . (3.29) 

From (3.29) it is immediately clear that the time difference   

€ 

τ = Ta  corresponds 
to the e-folding time (difference) for variable   

€ 

a. Inserting (3.29) into (3.28) 
shows that this model approach for   

€ 

Ra  is consistent with the definition of the 
integral time scale (i.e., the integration of (3.29) yields Ta). 
In a similar manner the auto correlation function in space and a corresponding 
integral length scale can be defined (in one spatial dimension for simplicity): 

Ra,x (x,Δx) ≡
a’(x) ⋅a’(x+Δx)

a’2(x)
. (3.30) 

and  

La,x (Δx) ≡ Ra,x
0

∞

∫ (Δx)dΔx . (3.31) 

These integral scales will play an important role in developing a theory for the 
dispersion of air pollutant in a turbulent flow, the so-called Taylor theory 
(Chapter 10). 

 
Figure 3.11 Auto correlation function for a variable with large (left) and small (right) 

Integral time scale. 
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