

Contrato CCT 871 de 2020

Elaborado por: **Universidad EAFIT**

Monitoreo, análisis en tiempo real de variables hidrológicas, meteorológicas, seguimiento de condiciones morfodinámicas y sísmicas, y de calidad del aire y demás variables atmosféricas que permitan hacer el análisis holístico en el territorio metropolitano y la región vecina para la toma de decisiones e investigación científica y aplicada para la gestión del riesgo en el contexto de los subprocesos de conocimiento, reducción del riesgo y manejo del desastre mediante el desarrollo, fortalecimiento y operación del SIATA.

Elaborado por: Maria Paula Velásquez García, Analista de datos. Mauricio Ramírez Arias, Analista de datos.

Revisado y autorizado por: Laura Herrera Mejia, Directora de la Red.

huf thuf

Fecha de emisión: 14 de octubre del 2020

> Código: F-GAA-RA-75 Versión: 5

Nota: Este informe no puede ser replicado sin autorización del Área Metropolitana del Valle de Aburrá.

1

2.	Descripción de la red	2
3.	Generalidades de los Contaminantes	8
	Índice de Calidad del Aire (ICA) $\ \ldots \ \ldots$	9
4.	Material Particulado menor a 2.5 μm (PM2.5)	11
	Concentración Promedio Diaria de PM2.5	12
	Ciclo Diurno de la Concentración de PM2.5	14
	Índice de Calidad del Aire (ICA) para el PM2.5	18
5.	Material Particulado menor a 10 μm (PM10)	21
	Concentración Promedio Diaria de PM10	22
	Ciclo Diurno de la Concentración de PM10	23
	Índice de Calidad del Aire (ICA) para PM10 $\ \ldots \ \ldots$	24
6.	Ozono (O_3)	26
	Concentraciones octohorarias de Ozono	26
	Ciclo Diurno de la Concentración de Ozono	27
	Índice de Calidad del Aire (ICA) para concentraciones horarias y octohorarias de ozono	29

1. Introducción

7.	Oxidos de Nitrógeno (NO_x)	31
	Ciclo Diurno de la Concentración de NO_x	32
	Concentración Promedio Diaria de NO_2	33
	Ciclo Diurno de la Concentración de NO_2	34
	Índice de Calidad del Aire (ICA) para las concentraciones horarias de NO_2	35
	Ciclo Diurno de la Concentración de NO	36
8.	Monóxido de Carbono (CO)	38
	Concentraciones Horarias y Octohorarias de CO	38
	Ciclo Diurno de la Concentración de CO	39
	Índice de Calidad del Aire (ICA) para concentraciones octohorarias de CO $\dots \dots \dots \dots$	40
9.	Dióxido de Azufre (SO_2)	41
	Concentración Promedio Diaria de SO_2	41
	Ciclo Diurno de la Concentración de SO_2	42
	Índice de Calidad del Aire (ICA) para las concentraciones horarias de SO_2	43
10	.Meteorología	44
	Ciclo Diurno de la Radiación Solar, Temperatura y Humedad Relativa	45
	Precipitación	47
	Vientos	50
11	.Anexos	54
	Anexo 1. Métodos de medición	54
	Anexo 2. Identificación de muestras en los equipos manuales	56

Anexo 3.	Condiciones ambientales de muestreo	57
Anexo 4.	Series de las concentraciones de los contaminantes criterio	61

Índice de Figuras

4.1.	Estaciones automáticas de monitoreo de PM2.5	11
4.2.	Estaciones manuales de monitoreo de PM2.5	12
4.3.	Concentración diaria de PM2.5 para las estaciones automáticas. Nota: En la gráfica NaN corresponde a datos faltantes	13
4.4.	Ciclo diurno de PM2.5 para las estaciones automáticas	15
4.4.	Continuación	16
4.4.	Continuación	17
4.5.	Índice de Calidad del Aire para las estaciones automáticas de PM2.5	18
4.6.	Índice de Calidad del Aire para las estaciones manuales de PM2.5 $$	19
4.7.	Porcentaje de días en las distintas clasificaciones del ICA para las estaciones de PM2.5 del municipio de Medellín	19
4.8.	Porcentaje de días en las distintas clasificaciones del ICA para las estaciones de PM2.5 de los municipios del área metropolitana del Valle de Aburrá, excepto Medellín	19
4.9.	Porcentaje de días en las distintas clasificaciones del ICA para las estaciones manuales de PM2.5 de los municipios del área metropolitana del Valle de Aburrá	20
5.1.	Estaciones automáticas de monitoreo de PM10	21
5.2.	$Concentración\ Diaria\ de\ PM10\ para\ las\ estaciones\ automáticas.\ Nota:\ En\ la\ gráfica\ NaN\ corresponde\ a\ datos\ faltantes.\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .$	22
5.3.	Ciclo diurno de PM10 para las estaciones automáticas	23
5.3.	Continuación	24
5.4.	Índice de Calidad del Aire para las estaciones automáticas de PM10 \dots	25
5.5.	Porcentaje de días en las distintas clasificaciones del ICA para las estaciones automáticas de PM10	25
6.1.	Estaciones automáticas de monitoreo de Ozono	26
6.2.	Ciclo diurno de Ozono para las estaciones automáticas	28
6.2.	Continuación	29
6.3.	Porcentaje de las distintas categorías del ICA para las concentraciones horarias de Ozono $$	30
6.4.	Variación porcentual de las distintas categorías del ICA para las concentraciones octohorarias de Ozono	30

7.1.	Estaciones automáticas de monitoreo de NO_x	31
7.2.	Ciclo diurno de NO_x para las estaciones automáticas	32
7.2.	Continuación	33
7.3.	Concentraciones de NO_2 para las estaciones automáticas. Nota: En la gráfica NaN corresponde a datos faltantes	33
7.4.	Ciclo diurno de ${ m NO}_2$ para las estaciones automáticas	34
7.4.	Continuación	35
7.5.	Porcentaje de las distintas clasificaciones del ICA para las concentraciones horarias de $\mathrm{NO}_2\;$	36
7.6.	Ciclo diurno de NO para las estaciones automáticas	36
7.6.	Continuación	37
3.1.	Estaciones automáticas de monitoreo de CO	38
3.2.	Ciclo Diurno de CO para la estación MED-PJIC	39
8.3.	Variación porcentual de las categorías de calidad de aire para las concentraciones horarias de Co en las estaciones de monitoreo	40
9.1.	Estación automática de monitoreo de SO_2	41
9.2.	Concentración Diaria de SO_2 para la estación automática. Nota: En la gráfica NaN corresponde a datos faltantes	42
9.3.	Ciclo diurno de la concentración de SO_2 para la estación automática	43
9.4.	Porcentaje de días en las distintas categorías del ICA para la estación de SO_2	43
10.1	. Estaciones automáticas de monitoreo de Meteorologia	44
10.2	. Radiación Solar, Temperatura y Humedad Relativa para las distintas estaciones	46
10.2	. Continuación	47
10.3	. Precipitación horaria y acumulada para las distintas estaciones	48
10.3	. Continuación	49
10.4	. Rosas de Viento diurnas para las distintas estaciones	51
10.5	. Rosas de Viento nocturnas para las distintas estaciones	52
10.6	. Rosas de Viento totales para las distintas estaciones	53
11.1	. Condiciones de humedad y temperatura al interior del shelter	58
11.1	. Continuación	59
11 1	Continuación	60

11.1. Continuación	61
11.2. Series de las concentraciones de PM25	62
11.2. Continuación	63
11.2. Continuación	64
11.2. Continuación	65
11.3. Series de las concentraciones de PM10	66
11.3. Continuación	67
11.4. Series de las concentraciones de NO	68
11.4. Continuación	69
11.5. Series de las concentraciones de NO2	70
11.5. Continuación	71
11.6. Series de las concentraciones de NOx	72
11.6. Continuación	73
11.7. Series de las concentraciones de Ozono	74
11.7. Continuación	75
11.8. Series de las concentraciones de CO	75
11.0 Series de les concentraciones de SO2	76

Índice de Tablas

2.1.	Distribución de equipos de monitoreo en las estaciones de la REDMCA	2
2.2.	Clasificación de estaciones de acuerdo al tipo de zona (Área Metropolitana del Valle de Aburrá, 2014)	٠
2.3.	Clasificación de estaciones de acuerdo al tipo de fuentes emisoras predominantes (Área Metropolitana del Valle de Aburra, 2014).	4
2.4.	Clasificación de las estaciones	
2.5.	Ubicación geográfica de las estaciones de la red	7
3.1.	Porcentaje de datos válidos para los contaminantes	8
3.1.	Porcentaje de datos válidos para los contaminantes	Ć
3.2.	Puntos de Corte del ICA	10
4.1.	Estadísticos de las concentraciones de PM2.5 durante el mes de Septiembre de 2020 para las estaciones del municipio de Medellín	13
4.2.	Estadísticos de las concentraciones de PM2.5 durante el mes de Septiembre de 2020 para los municipios del área metropolitana del Valle de Aburrá diferentes a Medellín	14
5.1.	Estadísticos de PM10 para las estaciones automáticas, Septiembre 2020	22
6.1.	Estadísticos Septiembre 2020 Ozono	27
7.1.	Estadísticos Septiembre 2020 NO_2	34
8.1.	Resumen estadístico de las concentraciones de CO, Septiembre 2020	39
9.1.	Estadísticos Septiembre 2020 SO2	42
10.1.	. Porcentaje de datos válidos Meteorología	45
10.2.	. Estadísticos Precipitación	50
11.1.	. Métodos y rangos de operación para los equipos pertenecientes a la REDMCA	54
11.1.	. Métodos y rangos de operación para los equipos pertenecientes a la REDMCA	55
11.1.	. Métodos y rangos de operación para los equipos pertenecientes a la REDMCA	56
11.2.	. Identificación de filtros de las estaciones manuales de PM2.5	57

1 Introducción

El Sistema de Alerta Temprana de Medellín y el Valle de Aburrá (SIATA), es un proyecto de Ciencia y Tecnología y una estrategia para la gestión de riesgos del Área Metropolitana del Valle de Aburrá y la Alcaldía de Medellín, que cuenta con el apoyo y los aportes de EPM e ISAGEN.

El SIATA tiene como tarea fundamental alertar en tiempo real a los organismos gestores de riesgos y a la comunidad, frente a la posible ocurrencia de un evento extremo detonado por condiciones meteorológicas que pueda generar una emergencia o desastre. Con este fin se usan diferentes herramientas para monitorear en tiempo real de condiciones hidrometeorológicas de la región; se desarrollan modelos de pronóstico meteorológico e hidrológico, ajustados a las condiciones de la región; y se entrega información de manera oportuna a las entidades gestoras de riesgo de en la jurisdicción.

Desde el 1 de Agosto de 2016 el SIATA se constituye como operador de la Red de Monitoreo de Calidad del Aire del Área Metropolitana del Valle de Aburrá (REDMCA), encargándose de la operación permanente de la red y la activación de protocolos de contingencia en caso de falla del sistema. De igual forma, debe apoyar de manera priorizada la gestión de eventos críticos relacionados con la calidad del aire de los municipios de la jurisdicción, entregando reportes de situaciones críticas de manera permanente y ante alteraciones de las condiciones ambientales de la región que puedan ser monitoreadas por el sistema.

Las condiciones meteorológicas han sido identificadas como un elemento esencial para el pronóstico, entendimiento y planificación de la calidad del aire dentro de nuestra región metropolitana, siendo la atmósfera el medio donde se liberan, transportan y dispersan los contaminantes. La topografía compleja del Valle de Aburrá favorece, bajo condiciones de estabilidad atmosférica, la acumulación de contaminantes cerca de la superficie, especialmente durante las primeras horas de la mañana y durante las horas posteriores al atardecer.

En este informe se presenta el análisis de los registros obtenidos de la REDMCA, tanto para contaminantes atmosféricos y variables meteorológicas, durante el mes de Septiembre de 2020. Igualmente se presenta el cálculo del Índice de Calidad del Aire (ICA) asociado a cada uno de los contaminantes criterio monitoreados dentro del Área Metropolitana del Valle de Aburrá. En la sección de Anexos se adjuntan los métodos y rangos de operación de los equipos de la red de medición (Anexo 1), la variación de las condiciones ambientales al interior de las estaciones en las que se realiza seguimiento de estas variables (Anexo 2) y el comportamiento de las series horarias para los diferentes contaminantes monitoreados durante el mes (Anexo 3).

2 Descripción de la red

La Red de Monitoreo de Calidad del Aire del Valle de Aburrá está constituida por 37 puntos de monitoreo distribuidos en los 10 municipios del Área Metropolitana del Valle de Aburrá (Dirección: Carrera 53 # 40A - 31, Contacto: Tel = +574 385 6000 ext. 404, Correo = ana.orrego@metropol.gov.co). Estos puntos de monitoreo están dotados de equipos tanto automáticos como manuales, los cuales permiten hacer seguimiento de los contaminantes criterio definidos por el Ministerio de Ambiente, Vivienda y Desarrollo Territorial, actual Ministerio de Ambiente y Desarrollo Sostenible -MADS-. La Red de Calidad de Aire se complementa con la información obtenida de la Red de Monitoreo de Ruido ambiental compuesta por 8 estaciones.

MUNICIPIO	SIGLA												
	SIGLA	Black Carbon	BTEX	PM10 (S)	PM10	PM2.5 (S)	PM2.5	SO ₂	NOX	со	O ₃	Met.	Ruido Ambient
	BAR-HSVP			х									
BARBOSA	BAR-TORR						x						
	BAR-PDLA										x	x	
	GIR-IECO				x							x	
GIRARDOTA	GIR-BOTJ												х
	GIR-SOSN						x	x	x	x	x	x	
	COP-HSMA			x									
COPACABANA	COP-CVID						x					х	
	BEL-JEGA					х							
BELLO	BEL-USBV				x	_^					х	x	
	BEL-FEVE						х						
	MED-ARAN						x						_
	MED-ALTA						X						_
	MED-BEME						x						_
	MED-BEME						X		x		x	x	_
	MED-FISC						X				^	X	_
	MED-SELE MED-MIRA			х			X						_
				X							X	X	
	CEN-TRAF	x	x		X		х		X				х
	MED-EXSA				х								_
MEDELLÍN	MED-ITMR				х				х				
MEDELLIN	MED-UDEM										х	Х	
	MED-CORA			х								_	
	MED-ZOOL												X
	MED-PJIC			х	х	х			х	х		x	
	MED-PJIR												х
	MED-LAYE						x				x	x	
	MED-SCRI						x						
	MED-SIAT												х
	MED-TESO						x						
	MED-VILL						x						
	ITA-PTAR			x									
	ITA-CJUS						x		x			x	
	ITA-POGO	x		х	x								
ITAGÜÍ	ITA-CONC				x		x				x	x	
	ITA-RESU						x						
	ITA-SAMA												x
	ITA-ACUA												х
ENVIGADO	ENV-HOSP						x						
ESTRELLA	EST-MAGO			x									
ESTRELLA	EST-HOSP						x						
	SUR-TRAF			x	х		x		x			x	
SABANETA	SAB-SEMS												x
	SAB-RAME						x					x	
CALDAS	CAL-JOAR			x			x						
CALDAS	CAL-LASA						x				x	х	
TOTALES	45	2	1	10	9	2	23	1	7	2	9	16	8

Tabla 2.1: Distribución de equipos de monitoreo en las estaciones de la REDMCA

De acuerdo a lo reportado en la Tabla 2.1, durante el mes de Septiembre de 2020 la red estuvo compuesta por 32 equipos automáticos para el monitoreo de material particulado: 22 para PM2.5 y 9 para PM10; 10 equipos manuales con resolución temporal diaria para la medición de PM10, y 2 para la medición de PM2.5, representados en color azul en la tabla dado que no tienen comunicación en tiempo real.

Adicional a los equipos mencionados en el párrafo anterior, considerados oficiales, en la estación

ubicada en la unidad residencial Reservas del Sur del municipio de Itagüí, estación ITA-RESU, operó un equipo automático tipo Aeroqual, el cual se utiliza como equipo de campaña para evaluar la influencia de la zona industrial cercana a la unidad residencial.

Por otra parte, la red de monitoreo contó con 19 equipos para el seguimiento a las concentraciones de contaminantes gasesosos: 9 analizadores de ozono, 7 analizadores de NO_x (NO , NO_2 y NO_x), un analizador de SO_2 y dos analizadores de CO ; 2 equipos monitores de Black Carbon; y 16 estaciones meteorológicas instaladas en 8 de los 10 municipios del área metropolitana y que monitorean, entre otras variables, velocidad y dirección del viento, temperatura y humedad relativa, radiación global, presión atmosférica y precipitación. La información de la Red de Calidad de Aire se complementa con la Red de Monitoreo de Ruido Ambiental, la cual está conformada por 8 equipos automáticos con resolución minutal.

Cabe agregar que durante el mes de Septiembre estuvo suspendida la operación de los equipos manuales de PM10 dado que el proveedor del proceso de gravimetría para los filtros de PM10, reportó que no le era posible prestar el servicio pues tenían inconvenientes con la fecha de la resolución de acreditación del IDEAM. A partir de esta situación fue necesario buscar un proveedor diferente con resolución de acreditación vigente.

Las estaciones de la red son clasificadas según el tipo de zona donde se encuentran ubicadas y el tipo de fuentes de emisión predominantes en su área de influencia. Esta clasificación se encuentra contenida dentro de la actualización de la clasificación de las estaciones de la Red de Monitoreo de Calidad del Aire del Valle de Aburrá (Área Metropolitana del Valle de Aburrá, 2014), la cual se basa en el Manual de Diseño de Sistemas de Vigilancia de Calidad del Aire del Protocolo para el Monitoreo y Seguimiento de Calidad del Aire (Ministerio de Ambiente, Vivienda y Desarrollo Territorial, 2010) y se presentan a continuación:

Tipo de zona	Descripción
Urbana	Área totalmente urbanizada. Un área edificada no estará mezclada con áreas no urbanizadas, con la excepción de los parques urbanos
Suburbana	Área en gran parte urbana edificada, pero las áreas edificadas estarán mezcladas con áreas no urbanizadas (por ejemplo con áreas agrícolas, lagos, bosques, grandes zonas verdes, etc.)
Rural	Se define como áreas rurales todas aquellas que no satisfagan los criterios para áreas urbanas y suburbanas.

Tabla 2.2: Clasificación de estaciones de acuerdo al tipo de zona (Área Metropolitana del Valle de Aburrá, 2014)

Tipo de área	Descripción
De Tráfico	Estaciones ubicadas de manera que el nivel de contaminante medido está determinando principalmente por emisiones del tráfico cercano.
Punto Crítico	Estaciones ubicadas a nivel de suelo de apoyo a estudios epidemiológicos.
Industrial	Estaciones ubicadas de manera que el nivel de contaminación medido este influenciado significativamente por las emisiones cercanas de fuentes industriales.
	Estaciones ubicadas de manera que el nivel de contaminante medido no está significativamente influenciadas por fuentes o calle alguna, pero si por la contribución de las fuentes que influyen en estas estaciones debido al régimen de vientos.
Entorno de Fondo	Por ejemplo estaciones ubicadas en un centro urbano que está bajo la influencia indirecta del tráfico o procesos de combustión debido a la dirección del viento, o estaciones ubicadas en áreas rurales influenciadas por centros urbanos o áreas industriales debido al régimen de vientos.
	También serán consideradas de fondo, estaciones que se encuentran vientos arriba de la fuente evaluada.

Tabla 2.3: Clasificación de estaciones de acuerdo al tipo de fuentes emisoras predominantes (Área Metropolitana del Valle de Aburra, 2014).

Adicional a las clasificaciones mostradas en las Tablas 2.2 y 2.3, se considera la categoría tendencia de mesoescala para estaciones ubicadas a una altura superior a 15 metros en áreas urbanas del valle. Se presenta a continuación la clasificación de las estaciones pertenecientes a la Red de Monitoreo, teniendo como base la actualización de la clasificación de las estaciones de la Red de Monitoreo de Calidad del Aire del Valle de Aburrá (Área Metropolitana del Valle de Aburrá, 2014).

Clasificación	Estación	Sigla	Municipio
	Estación Tráfico Centro	CEN-TRAF	Medellín
Urbana de Tráfico	Estación Tráfico Sur	SUR-TRAF	Sabaneta
	Politécnico Colombiano Jaime Isaza Cadavid	MED-PJIC	Medellín
	Estación de Policía Los Gómez	ITA-POGO	Itagüí
Urbana Industrial	Casa de Justicia de Itagüí	ITA-CJUS	Itagüí
Orbana industriai	Institución Educativa María Goretti	EST-MAGO	La Estrella
	Fiscalía General de la Nación	MED-FISC	Medellín
	Institución Educativa Colombia	GIR-IECO	Girardota
	Hospital La Estrella	EST-HOSP	La Estrella
	Barbosa Torre Social	BAR-TORR	Barbosa
	Copacabana Ciudadela de la Vida	COP-CVID	Copacabana
	Institución Educativa Ciro Mendia	MED-ARAN	Medellín
	Parque Biblioteca Fernando Botero	MED-SCRI	Medellín
	Planta de Agua Potable de EPM	MED-VILL	Medellín
	Institución Educativa Pedro Justo Berrío	MED-BEME	Medellín
Urbana de Fondo	Institución Educativa Pedro Octavio Amado	MED-ALTA	Medellín
Orbana de i ondo	Institución Educativa Inem Santa Catalina	MED-TESO	Medellín
	Hospital Manuel Uribe Ángel Sede - Santa Gertrudis	ENV-HOSP	Envigado
	Institución Educativa jorge Eliecer Gaitán	BEL-JEGA	Bello
	Liceo Fernando Vélez	BEL-FEVE	Bello
	Institución Educativa Rafael J. Mejía	SAB-RAME	Sabaneta
	Escuela Joaquín Aristizabal	CAL-JOAR	Caldas
	Instituto Tecnológico Metropolitano sede Robledo	MED-ITMR	Medellín
	Corantioquia	MED-CORA	Medellín
Urbana de Tendencia	Éxito San Antonio	MED-EXSA	Medellín
Mesoescala	Planta de Tratamiento de Aguas Residuales San Fernando	ITA-PTAR	Itagüí
Suburbana de Tráfico	Universidad de Medellín	MED-UDEM	Medellín
	Hospital San Vicente de Paul	BAR-HSVP	Barbosa
	Hospital Santa Margarita	COP-HSMA	Copacabana
	Universidad San Buenaventura	BEL-USBV	Bello
Suburbana de Fondo	Tanques Miraflores	MED-MIRA	Medellín
	Tanques La Ye	MED-LAYE	Medellín
	Concejo de Itagüí	ITA-CONC	Itagüí
	Corporación Universitaria Lasallista	CAL-LASA	Caldas
Donal de Estats	Parque de las Aguas	BAR-PDLA	Barbosa
Rural de Fondo	Santa Elena	MED-SELE	Medellín
Suburbana Industrial	SOS Aburrá Norte	GIR-SOSN	Girardota

Tabla 2.4: Clasificación de las estaciones.

El Anexo 1 presenta los diferentes equipos de medición que hacen parte de la REDMCA, así como la respectiva metodología de medición utilizada en cada uno de ellos, su rango de medición, estado de la muestra y los respectivos límites permisibles establecidos en la Resolución 2254 del 01 de noviembre del 2017 del Ministerio de Ambiente y Desarrollo Sostenible.

Finalmente, la tabla 2.5 presenta la dirección, la latitud y la longitud de las estaciones que hacen parte de la red.

ESTACIÓN	DIRECCIÓN	LATITUD	LONGITUD
Barbosa			
BAR-HSVP	Carrera 17 # 10 - 34	6.43917	-75.33633
BAR-PDLA	Carrera 48 # 70 - 10	6.40671	-75.41949
BAR-TORR	Calle 15 # 13 - 80	6.43696	-75.3304
Girardota			
GIR-IECO	Calle 5a # 14a - 62	6.37852	-75.44398
GIR-SOSN	Carrera 19 $\#$ 1064	6.37904	-75.45091
Copacabana			
COP-CVID	Carrera 46b # 47a - 39	6.34536	-75.50475
COP-HSMA	Carrera 45 # 52 - 26	6.35272	-75.50822
Bello			
BEL-FEVE	Carrera 58a # 52c - 135	6.3375655	-75.5678
BEL-JEGA	Carrera 50 $\#$ 53 - 04	6.33711	-75.55866
BEL-USBV	Calle 45 $\#$ 61 - 40	6.3307	-75.56867
Medellín			
MED-ALTA	Carrera 88a # 18a-5	6.22481	-75.61381
MED-ARAN	Calle 99 # 48 - 55	6.29346	-75.55643
MED-BEME	Carrera 86 # 34 - 97	6.243	-75.61201
MED-CORA	Carrera 65 # 44a - 32	6.2525	-75.58608
MED-EXSA	Calle 48 # 46 - 115	6.24933	-75.57025
MED-ITMR	Carrera 80 # 65 - 223	6.27556	-75.58829
MED-LAYE	Calle 16a sur # 9e - 300	6.18254	-75.55064
CEN-TRAF	Carrera 53 $\#$ 52 - 51	6.25256	-75.56958
MED-PJIC	Carrera 48 # 7 - 151	6.20897	-75.57777
MED-MIRA	Calle 40 # 21 - 03	6.22997	-75.54919
MED-SCRI	Carrera 131 # 62 - 15	6.2805	-75.6366
MED-SELE	Vereda Piedra Gorda, Santa Elena	6.236361	-75.498462
MED-SIAT	Calle 50 # 71-147	6.25922	-75.58864
MED-TESO	Calle 1 # 29 - 300	6.1997788	-75.5614385

ESTACIÓN	DIRECCIÓN	LATITUD	LONGITUD
MED-UDEM	Carrera 87 # 30 - 65	6.23018	-75.60996
MED-FISC	Carrera 64 c $\#$ 67 - 300	6.2687888	-75.5737076
MED-VILL	Calle 66c # 39 - 93	6.26172	-75.55164
Envigado			
ENV-HOSP	Diagonal 33 $\#$ 34c Sur 31	6.16849	-75.58197
Itagüí			
ITA-CJUS	Carrera 52 $\#$ 74 - 67	6.18567	-75.59721
ITA-CONC	Carrera 64 $\#$ 25 - 01	6.1685	-75.64436
ITA-POGO	Vereda Los Gómez	6.189723	-75.610588
ITA-PTAR	Calle 85 $\#$ 42 - 381	6.19364	-75.59158
La Estrella			
EST-HOSP	Calle 83a Sur # 6045	6.15553	-75.64417
EST-MAGO	Calle 83b sur # 52 - 10	6.16092	-75.645
Sabaneta			
SUR-TRAF	Calle 77sur # 49	6.15231	-75.62749
SAB-RAME	Carrera 45 # 77c sur 4	6.15678	-75.62137
Caldas			
CAL-JOAR	Carrera 51 # 127 Sur - 41	6.09308	-75.63777
CAL-LASA	Carrera 51 # 118 sur - 57	6.09908	-75.63863

 ${\bf Tabla}$ 2.5: Ubicación geográfica de las estaciones de la red

3 Generalidades de los Contaminantes

La Tabla 3.1 muestra el porcentaje de datos válidos para los distintos contaminantes medidos en las diferentes estaciones de monitoreo. De acuerdo al Protocolo para el Monitoreo y Seguimiento de la Calidad del Aire del MAVDT (Actual MADS) se establece que para el cálculo de los parámetros estadísticos es necesario contar con al menos el 75 % de información válida (Ministerio de Ambiente, Vivienda y Desarrollo Territorial, 2010).

Cabe recordar que durante el mes de Septiembre estuvo suspendida la operación de los equipos manuales de PM10 dado que el proveedor del proceso de gravimetría para los filtros de PM10, reportó que no le era posible prestar el servicio pues tenían inconvenientes con la fecha de la resolución de acreditación del IDEAM. A partir de esta situación fue necesario buscar un proveedor diferente con resolución de acreditación vigente.

Según los resultados mostrados, para todas las estaciones se obtuvieron porcentajes de datos válidos superiores al $75\,\%$.

Tabla 3.1: Porcentaje de datos válidos para los contaminantes

Estaciones	PM2.5	PM10	NO	NO_2	\mathbf{NO}_x	O_3	СО	\mathbf{SO}_2	PM2.5(s)
BAR-PDLA						100.0			
GIR-SOSN	99.2		99.7	99.7	99.7	99.4	94.2	82.9	
GIR-IECO		95.6							
COP-CVID	98.5								
BEL-FEVE	95.6								
BEL-JEGA									100.0
BEL-USBV		98.5				99.6			
MED-ARAN	99.4								
MED-SCRI	96.0								
MED-ITMR		99.3	99.4	99.4	99.4				
MED-FISC	99.3		99.6	99.6	99.6	99.9			
MED-VILL	97.6								
CEN-TRAF	96.9	96.9	98.2	98.2	98.2				
MED-EXSA		98.8							
MED-BEME	97.2								
MED-SELE	96.4								
MED-UDEM						98.8			
MED-MIRA						99.6			
MED-ALTA	99.3								

Tabla 3.1: Porcentaje de datos válidos para los contaminantes

Estaciones	PM2.5	PM10	NO	\mathbf{NO}_2	\mathbf{NO}_x	O_3	CO	\mathbf{SO}_2	PM2.5(s)
MED-PJIC		95.1	97.5	97.5	97.5		97.8		90.0
MED-TESO	98.2								
ITA-POGO		99.3							
ITA-CJUS	99.3		99.4	99.4	99.4				
MED-LAYE	94.4					85.0			
ENV-HOSP	99.4								
EST-HOSP	99.7								
SUR-TRAF	99.0	95.6	97.1	97.1	97.1				
SAB-RAME	98.3								
CAL-LASA	99.2					99.9			
CAL-JOAR	98.8								

Los resultados presentados en este informe se calculan a partir de las concentraciones sometidas a ensayo y muestreo por las estaciones manuales y automáticas, respectivamente. Las concentraciones a analizar en este informe son las pertenecientes al mes de Septiembre y son responsabilidad del proyecto SIATA. Los resultados de los contaminantes criterio son comparados con la norma colombiana en unidades de μ g/m³, bajo condiciones de referencia. Los resultados del gas NO_x son reportados en ppm, al no tener factor de conversión a las unidades μ g/m³.

En el Anexo 2 se reportan las condiciones ambientales al interior de las estaciones. En este anexo se presentan los resultados para la temperatura y la humedad relativa.

Índice de Calidad del Aire (ICA)

El Índice de Calidad del Aire (ICA) es un indicador adimensional que oscila entre 0 y 500. Este indicador se desarrolla con el propósito de informar a la comunidad sobre el estado de la calidad del aire y advertir sobre posibles riesgos a la salud ante la exposición a una atmósfera contaminada, dividiéndo-se en las siguientes categorías y colores que representan la calidad del aire: Bueno (verde), moderado (amarillo), dañino para la salud de grupos sensibles (naranja) y dañina para la salud (rojo) (U.S. Environmental Protection Agency, 2014). La Tabla 3.2 presenta los puntos de Corte del ICA para las diferentes clasificaciones.

ICA	COLOR	CLASIFICACIÓN	O₃ 8h µg/m³	O₃ 1h µg/m³	PM10 24h μg/m³	PM2.5 24h μg/m³	CO 8h µg/m³	SO₂ 24h μg/m³	NO ₂ 1h μg/m³
0-50	Verde	Buena	0-106		0-54	0-12	0-5094	0-93	0-100
51-100	Amarillo	Aceptable	107-138		55-154	13-37	5095-10819	94-197	101-189
101-150	Naranja	Dañina a la salud de grupos sensibles	139-167	245-323	155-254	38-55	10820-14254	198-486	190-677
151-200	Rojo	Dañina a la salud	168-207	324-401	255-354	56-150	14255-17688	487-797	678-1221
201-300	Morado	Muy dañina a la salud	208-393	402-794	355-424	151-250	17689-34862	798-1583	1222-2349
301-500	Marrón	Peligrosa	394	795-1185	425-604	251-500	34863-57703	1584-2629	2350-3853

Tabla 3.2: Puntos de Corte del ICA

4 Material Particulado menor a 2.5 $\mu m \text{ (PM2.5)}$

El Material Particulado menor a $2.5~\mu m$ (PM2.5) es uno de los contaminantes criterio que tienen más impacto en la calidad del aire de nuestra región metropolitana, además de ser uno de los más perjudiciales para la salud de las personas, debido a su capacidad para penetrar en las regiones más profundas del sistema respiratorio (Jaime and Vasco, 2008). El PM2.5 es clave para establecer el estado de la calidad del aire de la región y, junto con el material particulado PM10 y el ozono, constituyen los contaminantes principales en la gestión de episodios de contaminación en el Valle de Aburrá, para lo cual se considera como información base la presentada en la Resolución 2254 de 2017 del MADS.

La red de calidad del aire durante el mes de Septiembre de 2020 contó con 22 estaciones de monitoreo automático de PM2.5, ubicadas en los 10 municipios del Área Metropolitana del Valle de Aburrá. La Figura 4.1 presenta el mapa con la ubicación geográfica de las diferentes estaciones automáticas de PM2.5.

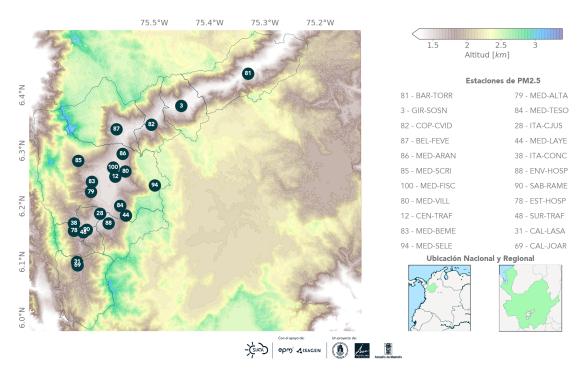


Figura 4.1: Estaciones automáticas de monitoreo de PM2.5

Se cuenta además con 2 estaciones manuales de monitoreo de PM2.5, las cuales están ubicadas en 2 municipios del área metropolitana. La Figura 4.2 presenta el mapa con la ubicación geográfica de estas estaciones. En el Anexo 2 se reporta la información de cada muestra ensayada durante el mes para los equipos manuales, de acuerdo a los requisitos de la norma NTC-ISO/IEC 17025:2005.

Finalmente, en el municipio de Itagüí se realiza una campaña de monitoreo de PM2.5 en la unidad residencial Reservas del Sur (estación ITA-RESU). Los resultados de esta campaña no se incluyen en el presente informe.

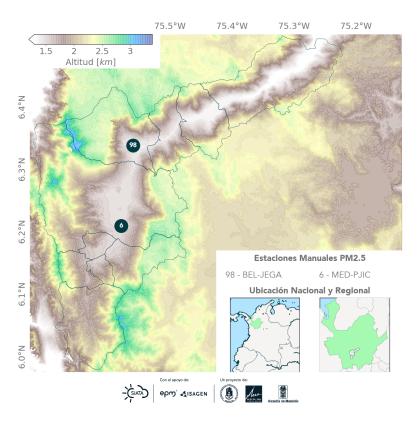
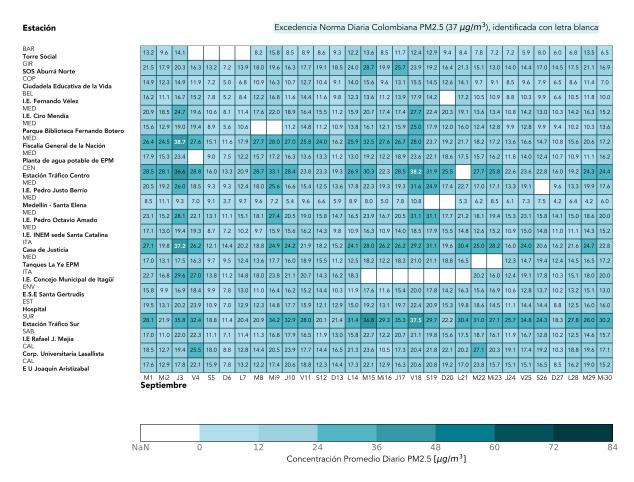


Figura 4.2: Estaciones manuales de monitoreo de PM2.5

Concentración Promedio Diaria de PM2.5


En la Figura 4.3 se presenta la concentración diaria de PM2.5 obtenida durante el mes de Septiembre de 2020 en las distintas estaciones de monitoreo automático. Según los resultados mostrados, se presentaron un total de 4 excedencias (representadas con letra blanca en la Figura) a la norma diaria colombiana (Definida como 37 $\mu q/m^3$ en la Resolución 2254 del 2017). Estas excedencias se registraron en las estaciones MED-FISC, CEN-TRAF, ITA-CJUS y SUR-TRAF.

Es importante mencionar que las estaciones de tráfico se encuentran fuertemente influenciadas por las emisiones vehiculares cercanas (Ministerio de Ambiente, Vivienda y Desarrollo Territorial, 2010), por lo que sus mediciones no son relevantes para determinar la exposición de la población a los contaminantes atmosféricos.

Figura 4.3: Concentración diaria de PM2.5 para las estaciones automáticas. Nota: En la gráfica NaN corresponde a datos faltantes.

En la estación MED-FISC se obtuvo la concentración promedio diaria más alta durante el mes de Septiembre de 2020, igual a 38.7 $\mu g/m^3$. Por otra parte, en la estación MED-SELE se registró la menor concentración promedio diaria, igual a 3.7 $\mu g/m^3$. La Tabla 4.2 presenta los valores medios, mínimos y máximos en la concentración de PM2.5 para cada una de las estaciones, se incluye además los resultados para las estaciones manuales o semiautomaticas, durante el mes de Septiembre.

	MED- ARAN	MED- VILL	MED- SCRI	MED- FISC	CEN- TRAF	MED- BEME	MED- ALTA	MED- PJIC(M)	MED- TESO	MED- LAYE	MED- SELE
CMD	30	29	28	30	29	29	30	9	30	28	28
MAX	27.7	23.6	25.0	38.7	38.2	31.6	31.1	27.1	19.4	21.1	11.1
MEDIA	16.6	15.1	13.2	22.0	25.5	17.9	19.4	15.8	13.8	15.5	7.3
MIN	8.1	7.5	5.6	10.8	13.3	9.3	11.1	4.1	7.2	9.5	3.7
NEND	0	0	0	1	1	0	0	0	0	0	0

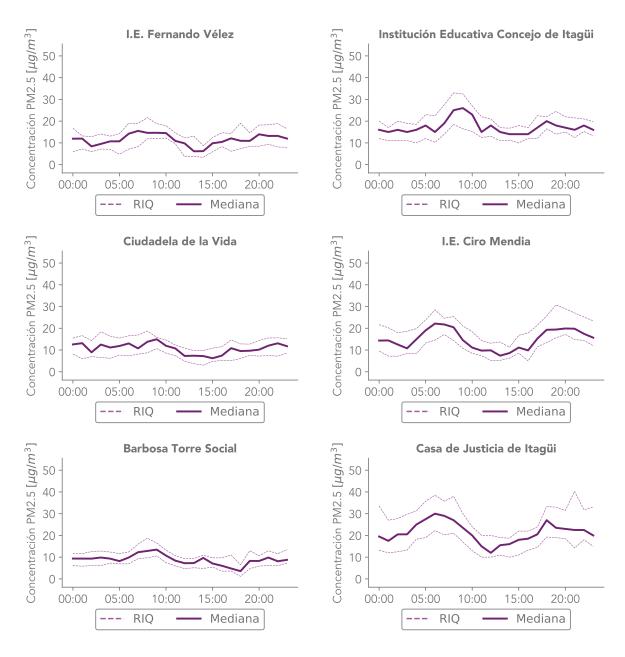
Tabla 4.1: Estadísticos de las concentraciones de PM2.5 durante el mes de Septiembre de 2020 para las estaciones del municipio de Medellín

	BAR- TORR	GIR- SOSN	COP- CVID	BEL- FEVE	BEL- J EGA(M)	ITA- CJUS	ENV- HOSP	ITA- CONC	SUR- TRAF	EST- HOSP	CAL- LASA	CAL- JOAR	SAB- RAME
CMD	26	30	30	29	10	30	30	23	30	30	30	30	30
MAX	15.8	28.7	16.3	17.9	26.9	37.2	20.0	29.6	37.5	23.9	27.1	23.8	22.7
MEDIA	9.8	18.1	11.0	11.9	12.7	23.1	14.0	18.1	27.5	15.5	18.3	16.5	15.5
MIN	5.9	7.2	5.0	5.2	3.8	12.1	7.8	10.3	11.4	7.0	8.8	7.8	7.1
NEND	0	0	0	0	0	1	0	0	1	0	0	0	0

Tabla 4.2: Estadísticos de las concentraciones de PM2.5 durante el mes de Septiembre de 2020 para los municipios del área metropolitana del Valle de Aburrá diferentes a Medellín.

Nota: 1. CMD: Cantidad de Muestras Diarias; NEND: Número de excedencias a la norma diaria; NP: No se presentan resultados debido a que no se obtuvo el 75 % de los datos válidos requeridos. 2. Las estaciones sombreadas son equipos semiautomáticos o manuales, los demás son automáticos.

Ciclo Diurno de la Concentración de PM2.5


La Figura 4.4 presenta el ciclo diurno de la concentración de PM2.5 para las diferentes estaciones de monitoreo automático. En general puede observarse un comportamiento típico bimodal de las concentraciones a lo largo del día, con un período de mayor concentración de partículas entre las 06:00 y las 10:00 y uno, un poco menos pronunciado, entre las 19:00 y las 23:00.

Dicho comportamiento es más notorio en las estaciones ubicadas al sur del Área Metropolitana, en especial para la estación SUR-TRAF, la cual está fuertemente influenciada por los efectos del tráfico. El ciclo bimodal podría ser explicado por el comportamiento meteorológico de la zona y la dinámica de movilidad dentro del área metropolitana. Las horas del día en las cuales se presenta mayor concentración de partículas con diámetro menor a 2.5 micrómetros corresponden a las horas en donde la superficie de la atmósfera aún no ha sido calentada por los efectos de la radiación solar, impidiendo la dispersión y el ascenso de contaminantes a la atmósfera libre; a esa condición se le llama estabilidad atmosférica, y favorece la acumulación de contaminantes en la superficie. A medida que la superficie se calienta, los contaminantes pueden ser removidos de la capa límite atmosférica, logrando las mínimas concentraciones de PM2.5 en horas de la tarde.

Sumado a este efecto se encuentra la dinámica de movilidad que se desarrolla en la ciudad. Las horas de máxima concentración de PM2.5 corresponden también a las horas pico de movilidad, las cuales se caracterizan por un alto flujo vehicular, identificado como una de las principales fuentes emisoras de partículas menores a $2.5 \ \mu m$.

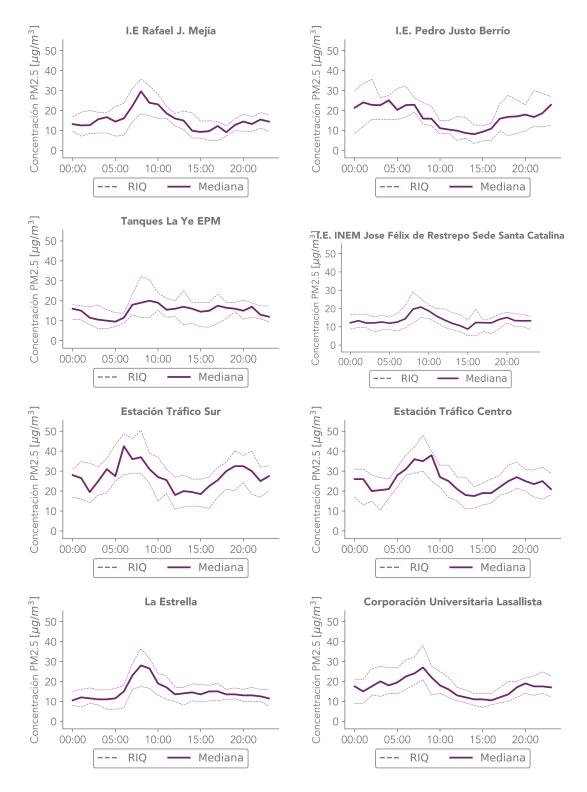


Figura 4.4: Ciclo diurno de PM2.5 para las estaciones automáticas Nota: En la Tabla 2.4 se relacionan con más detalle los nombres de las estaciones.

Figura 4.4: Continuación Nota: En la Tabla 2.4 se relacionan con más detalle los nombres de las estaciones.

Figura 4.4: Continuación Nota: En la Tabla 2.4 se relacionan con más detalle los nombres de las estaciones.

Índice de Calidad del Aire (ICA) para el PM2.5

La Figura 4.5 muestra la variación del índice de calidad del aire asociado a PM2.5 para las diferentes estaciones automáticas que operaron durante el mes de Septiembre del 2020. Puede observarse como la mayoría de estaciones presentaron valores de ICA equivalentes a la clasificación moderada. Las estaciones CEN-TRAF y MED-FISC presentaron calidad de aire dañina a la salud de grupos sensibles de acuerdo a sus valores de ICA.

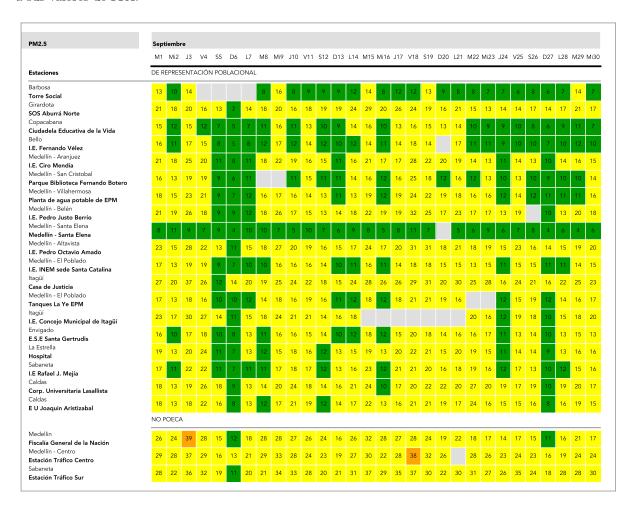


Figura 4.5: Índice de Calidad del Aire para las estaciones automáticas de PM2.5

En la Figura 4.6, se muestra el ICA de las estaciones manuales de PM2.5 que hacen parte de la Red de Monitoreo de Calidad del Aire. Según el método de medición, estos equipos tienen una resolución de muestreo diaria y no horaria como en el caso de las estaciones automáticas. Cabe agregar que la frecuencia de monitoreo es, en términos generales, cada 3 días. En la Figura 4.6, los cuadros grises corresponden a días en los que se invalidaron los datos o que por razones técnicas no se realizaron muestreos.

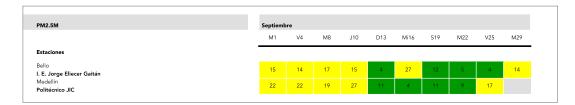
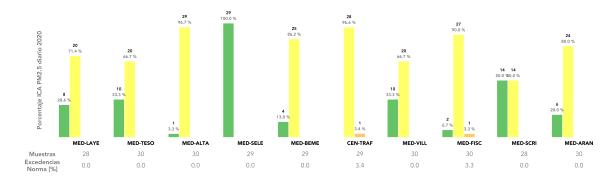
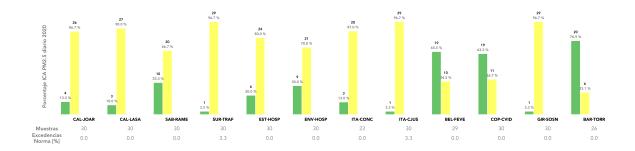


Figura 4.6: Índice de Calidad del Aire para las estaciones manuales de PM2.5

En las Figuras 4.7, 4.8 y 4.9 puede observarse un resumen de la información presentada en los gráficos anteriores. Se muestra el porcentaje y el número de días en los que los registros de cada estación en el municipio de Medellín (Figura 4.7) o en los demás municipios del área metropolitana (figura 4.8) se clasificaron en las diferentes categorías del ICA. La estación CEN-TRAF presentó, para el total de sus muestras, el mayor porcentaje de excedencias a la norma igual a 3.45 %. Así mismo, la estación ITA-CONC fue las estación con menor número de muestras diarias durante el mes.

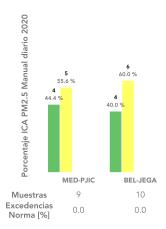

Figura 4.7: Porcentaje de días en las distintas clasificaciones del ICA para las estaciones de PM2.5 del municipio de Medellín.

Figura 4.8: Porcentaje de días en las distintas clasificaciones del ICA para las estaciones de PM2.5 de los municipios del área metropolitana del Valle de Aburrá, excepto Medellín.

Figura 4.9: Porcentaje de días en las distintas clasificaciones del ICA para las estaciones manuales de PM2.5 de los municipios del área metropolitana del Valle de Aburrá

5 Material Particulado menor a 10 μm (PM10)

El Material Particulado menor a $10 \ \mu m$ (PM10) es uno de los contaminantes criterio monitoreado por la REDMCA. De acuerdo a la última actualización del inventario de emisiones del Área Metropolitana del Valle de Aburrá, las emisiones de PM10 están asociadas principalmente a las fuentes fijas, siendo el sector textil y de confecciones, los sectores con mayor aporte (Área Metropolitana del Valle de Aburrá, 2015).

La red de calidad del aire cuenta con 9 estaciones de monitoreo automático de PM10, las cuales realizan monitoreo continuo cada hora mediante un equipo BAM1020 de la marca Met-One, ubicadas en 5 de los 10 municipios del Área Metropolitana del Valle de Aburrá. La Figura 5.1 presenta el mapa con la ubicación geográfica de las diferentes estaciones automáticas de PM10.

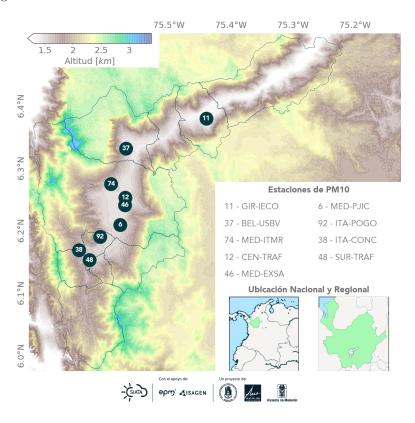


Figura 5.1: Estaciones automáticas de monitoreo de PM10

Se cuenta además con un total de 10 equipos manuales para el monitoreo de PM10, los cuales están distribuidos en 7 municipios del área metropolitana. La operación de estos equipos estuvo suspendida dado que el proveedor del proceso de gravimetría para los filtros de PM10, reportó que no le era posible

prestar el servicio pues tenían inconvenientes con la fecha de la resolución de acreditación del IDEAM. A partir de esta situación fue necesario buscar un proveedor diferente con resolución de acreditación vigente.

Concentración Promedio Diaria de PM10

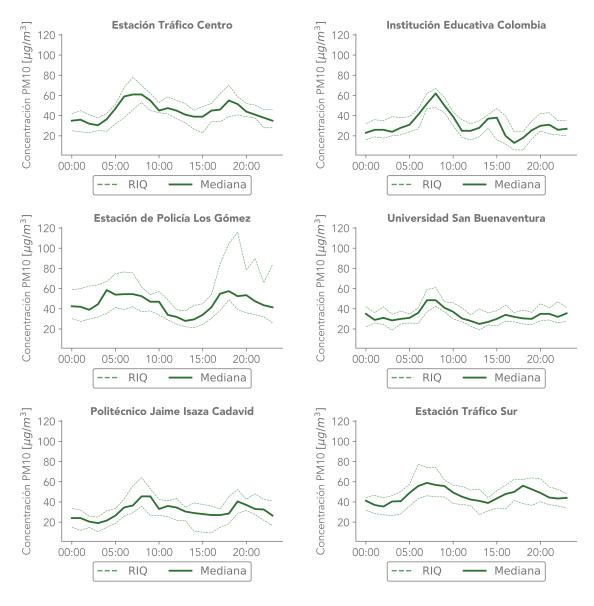
En la Figura 5.2 se presentan las concentraciones promedio diarias de PM10 obtenidas durante el mes de Septiembre de 2020 para las distintas estaciones de monitoreo automático. Puede observarse como durante el mes, y para las diferentes estaciones, se presentaron en total 2 excedencias (representadas con letra blanca dentro de la gráfica) a la norma diaria colombiana (Definida como 75 $\mu g/m^3$ en la Resolución 2254 del 2017 del Ministerio de Ambiente y Desarrollo Sostenible) en la estación ITA-POGO.

Estación									E	xcec	denc	ia N	orma	a Dia	aria (Colo	mbia	ana l	PM1	0 (75	5 μ g	/m³), ide	entif	icad	a coi	ı let	ra bl	anca	à
GIR I.E. Colombia	37.5	34.7		37.8	28.8	15.7	25.8	26.8	47.5	29.9	35.0	28.9	27.4	37.7	44.4	31.5	38.0	36.4	32.4	28.3	38.4	32.4	33.6	32.6	30.1	23.2	24.1	30.6	51.1	34.3
BEL U. San Buenaventura	44.2	33.3	42.1	38.2	26.0	23.3	30.8	33.5	44.9	35.5	34.1	29.2	27.2	34.5	37.8	32.5	41.4	42.9	33.8	33.5	43.4	33.3	36.7	32.3	36.5	31.0	25.0	32.4	38.3	30.4
MED ITM Robledo	42.2	37.6	60.2	38.2	25.8	20.2	27.5	38.9	54.8	35.2	32.0	28.8	24.7	33.7	40.1	44.4	45.0	49.9	43.4	35.8	43.0	37.1	32.7	28.8	35.4	29.5	23.8	34.2	36.6	31.7
CEN Estación Tráfico Centro	54.1	48.8	67.5	49.9	34.8	26.4	44.4	50.7	61.2	50.0	45.5	41.2	29.9	47.2	52.3	42.4	54.2	55.3	47.6	38.2		48.1	46.9	38.5	44.5	41.0	28.0	42.3	45.2	44.2
MED Exito San Antonio	58.0	56.8	70.7	54.8	33.8	23.9	45.2	48.0	65.8	44.7	51.9	41.9	31.7	49.4	47.6	47.3	53.2	65.5	54.2	42.1	55.8	53.8	54.2	43.4	46.6	40.4	27.5	44.0	51.5	50.5
MED Politécnico JIC	39.3	33.4	45.0	39.1	19.1	16.0	28.4	30.3	44.6	35.9	33.7	26.8	16.4	27.4	27.8	29.0	34.1	39.4	35.8			31.0	39.2	27.0	34.5	28.7	22.7	33.3	36.7	36.3
ITA Estación de Policia Los Gómez	57.9	46.9	84.2	57.3	30.7	39.0	45.1	44.5	93.7	50.7	59.8	46.2	31.6	46.3	45.3	62.8	64.0	68.4	61.3	43.7	61.0	48.6	51.0	38.4	39.2	42.9	36.2	38.2	61.5	45.7
ITA I.E. Concejo Municipal de Itagüí	40.3	32.1	49.7	42.8	26.0	21.6	27.7	29.1	42.7	35.5	36.4	26.0	25.9	35.8	36.5	34.4	42.3	40.8	39.9		35.8	36.3	30.1	27.5	36.8	31.6	23.5	30.7	34.5	37.3
SUR Estación Tráfico Sur	46.5	38.7	62.6	52.7	38.3	25.1	44.2	41.0	57.9	52.9	52.0	36.5	34.2	53.6	57.0	45.9	58.0	51.5	44.5	35.1	48.3	56.5	51.5	48.7	63.1	38.9	28.2	48.1	48.9	47.4
		Mi2 tien		V4	S5	D6	L7	M8	Mi9	J10	V11	S12	D13	L14	M15	Mi16	J17	V18	S19	D20	L21	M22	Mi23	J24	V25	S26	D27	L28	M29	Mi30
	NaN			0				23				46			6	9			92)			115	;		1	.38			16
	Concentración Promedio Diario PM10 [µg/m³]																													

Figura 5.2: Concentración Diaria de PM10 para las estaciones automáticas. Nota: En la gráfica NaN corresponde a datos faltantes.

El resumen de las concentraciones de PM10 obtenidas durante el mes de Septiembre en las estaciones automáticas se reporta en la Tabla 5.1. Se incluyen los valores máximos y mínimos diarios, y la concentración promedio mensual. Las concentraciones promedio diarias máxima y mínima, iguales a 93.7 $\mu g/m^3$ y 15.7 $\mu g/m^3$ respectivamente, se presentaron en las estaciones ITA-POGO y GIR-IECO.

	GIR- IECO	BEL- USBV	MED- ITMR	CEN- TRAF	MED- EXSA	MED- PJIC	ITA- POGO	ITA- CONC	SUR- TRAF
CMD	29	30	30	29	30	28	30	29	30
MAX	51.1	44.9	60.2	67.5	70.7	45.0	93.7	49.7	63.1
MEDIA	32.9	34.6	36.4	45.5	48.5	31.8	51.4	34.1	46.9
MIN	15.7	23.3	20.2	26.4	23.9	16.0	30.7	21.6	25.1
NEND	0	0	0	0	0	0	2	0	0


Tabla 5.1: Estadísticos de PM10 para las estaciones automáticas, Septiembre 2020

Ciclo Diurno de la Concentración de PM10

La Figura 5.3 presenta el ciclo diurno de la concentración de PM10 para las diferentes estaciones de monitoreo automáticas. Para el caso del PM10 el patrón en el ciclo diurno de la concentración no es tan marcado como para el PM2.5, sin embargo se conserva para todas las estaciones el pico máximo de concentración en las primeras horas de la mañana. Esto podría relacionarse, al igual que para el PM2.5, a las características meteorológicas de la región y a las dinámicas de movilidad del área metropolitana. Igualmente las concentraciones de PM10 pueden verse afectadas por procesos meteorológicos de alcance global, por ejemplo el transporte de arenas desde el Sahara por las ondas del este.

Figura 5.3: Ciclo diurno de PM10 para las estaciones automáticas Nota: En la Tabla 2.4 se relacionan con más detalle los nombres de las estaciones.

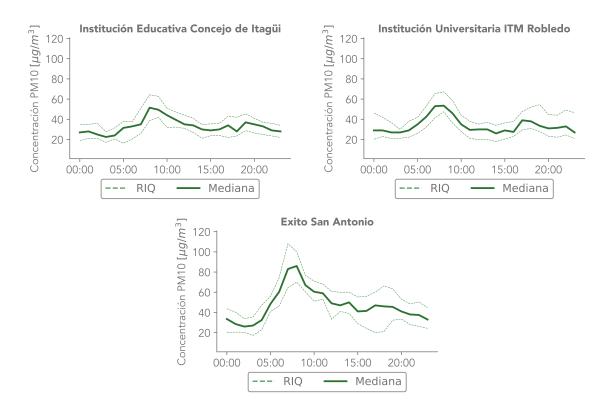


Figura 5.3: Continuación

Nota: En la Tabla 2.4 se relacionan con más detalle los nombres de las estaciones.

Índice de Calidad del Aire (ICA) para PM10

La Figura 5.4 muestra la variación del índice de calidad de aire asociado a PM10 para las diferentes estaciones automáticas durante el mes de Septiembre del 2020. Según los resultados, la mayoría de estaciones presentaron valores de ICA equivalentes a la clasificación buena. En ninguna de las estaciones se alcanzaron valores de ICA correspondientes a las categorías de calidad de aire dañina para la salud de grupos sensibles ó dañina para la salud.

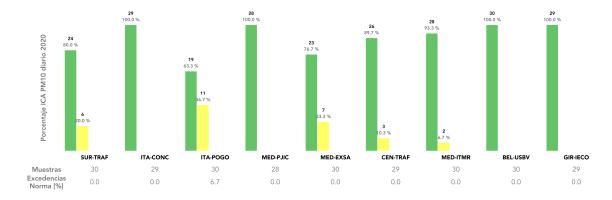



Figura 5.4: Índice de Calidad del Aire para las estaciones automáticas de PM10

En la Figura 5.5 puede observarse un resumen de la información presentada en el gráfico anterior. Se muestra el porcentaje de días que cada estación obtuvo para cada clasificación. La estación ITA-POGO es la única que presenta excedencias a la norma diaria, con un porcentaje de excedencias igual a 6.67 %. Se puede observar igualmente como la estación MED-PJIC corresponde a la estación automática con menor número de muestras diarias durante el mes.

Figura 5.5: Porcentaje de días en las distintas clasificaciones del ICA para las estaciones automáticas de PM10

6 Ozono (O_3)

El ozono troposférico es un contaminante secundario de la atmósfera (originados en el aire por la interacción de uno o más contaminantes, o condiciones naturales de la atmósfera) que presenta una importancia significativa en la Calidad del Aire del Área Metropolitana del Valle de Aburrá, esto debido a las condiciones topográficas, meteorológicas y al alto flujo vehicular característico de la zona, que favorecen su producción y concentración en la superficie.

La red de calidad del aire cuenta con 9 estaciones de monitoreo automático de Ozono, ubicadas en 6 de los 10 municipios del área metropolitana del Valle de Aburrá. La Figura 6.1 presenta el mapa con la ubicación geográfica de las diferentes estaciones automáticas de Ozono.

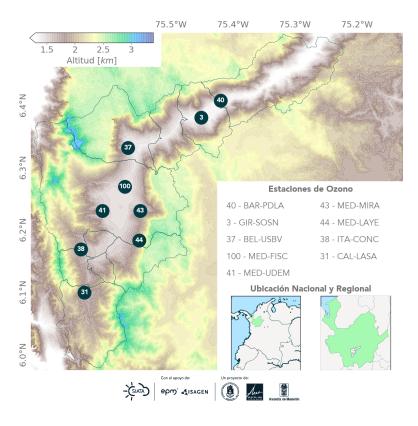


Figura 6.1: Estaciones automáticas de monitoreo de Ozono

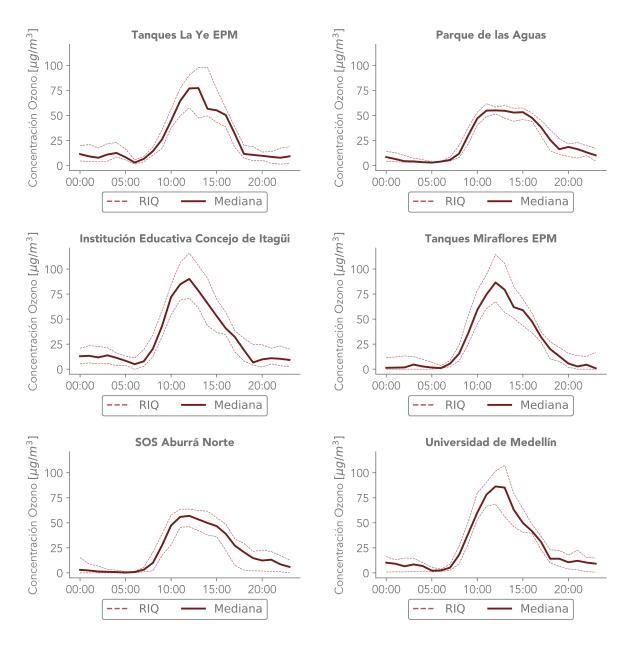
Concentraciones octoborarias de Ozono

En la Tabla 6.1 se presentan los valores máximos octohorarios (VM8H) de las concentraciones de ozono obtenidas durante el mes de Septiembre de 2020 para las distintas estaciones que monitorean esta variable. Adicionalmente, se presentan el número de excedencias a la norma octohoraria (NEN8H). Puede observarse como durante el mes, y para las diferentes estaciones, se presentaron un total de 10 excedencias

a la norma octohoraria colombiana, definida como $100~\mu g/m^3$ en la Resolución 2254 del 2017 (Ministerio de Ambiente y Desarrollo Sostenible, 2017). La estación ITA-CONC presentó la mayor cantidad con 6 excedencias. La estación ITA-CONC obtuvo la concentración octohoraria más alta durante el mes de Septiembre de 2020, igual a 117.9 $\mu q/m^3$.

	BAR- PDLA	GIR- SOSN	BEL- USBV	MED- FISC	MED- UDEM	MED- MIRA	MED- LAYE	ITA- CONC	CAL- LASA
MEDIA	25.0	20.3	22.0	25.5	29.1	29.1	27.5	34.7	27.8
VM8H	63.7	68.6	85.5	92.3	111.6	90.7	85.5	117.9	91.8
NEN8H	0	0	0	0	4	0	0	6	0

Tabla 6.1: Estadísticos Septiembre 2020 Ozono


Ciclo Diurno de la Concentración de Ozono

La Figura 6.2 presenta el ciclo diurno de la concentración de Ozono para las diferentes estaciones de monitoreo automático. Puede observarse como existe un comportamiento similar en cada una de las gráficas, las cuales presentan un ciclo unimodal para la concentración de ozono a lo largo del día, presentando su pico máximo cerca del medio día.

Este comportamiento unimodal tan marcado en las concentraciones de ozono es explicado principalmente por el ciclo diurno de la radiación solar. Para la formación de ozono a nivel troposférico se necesitan básicamente dos condiciones: la presencia de óxidos de nitrógeno o compuestos orgánicos volátiles dentro de la atmósfera y la presencia de luz solar. A medida que la luz solar incide sobre la atmósfera las moléculas de NO_2 son disociadas mediante fotolisis en NO y una molécula de oxígeno atómico , esta última reacciona con las moléculas de oxígeno (O_2) presentes en la atmósfera para formar Ozono a nivel troposférico. Es por tal motivo que a medida que se incrementa la radiación en la superficie, aumenta la concentración de ozono y a medida que la radiación disminuye también lo hace la concentración de ozono. Todo esto puede comprobarse en la Figura 6.2.

Figura 6.2: Ciclo diurno de Ozono para las estaciones automáticas. Nota: En la Tabla 2.4 se relacionan con más detalle los nombres de las estaciones.

Figura 6.2: Continuación

Nota: En la Tabla 2.4 se relacionan con más detalle los nombres de las estaciones.

Índice de Calidad del Aire (ICA) para concentraciones horarias y octohorarias de ozono

En la Figura 6.3 se muestra el porcentaje del ICA para las concentraciones horarias en las diferentes estaciones durante el mes de Septiembre del 2020. Según los resultados mostrados, las concentraciones horarias de ozono obtenidas durante el mes fueron inferiores al punto de corte definido para el cálculo de ICA asociado a Ozono, igual a 245 $\mu g/m^3$. En la Tabla 3.2 se reportan los puntos de corte para el índice de calidad de aire asociado a las concentraciones horarias de Ozono.

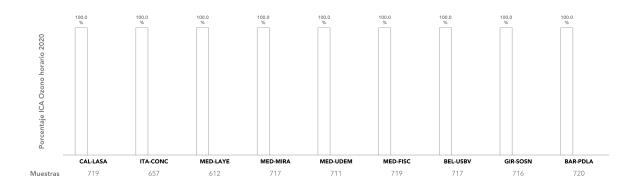


Figura 6.3: Porcentaje de las distintas categorías del ICA para las concentraciones horarias de Ozono

La Figura 6.4 muestra el porcentaje del ICA para el ozono octohorario en las diferentes estaciones durante el mes de Septiembre del 2020. Puede observarse como la mayoría de estaciones presentaron valores de ICA correspondientes a la clasificación buena. En cuanto al porcentaje de excedencia de la norma octohoraria, la estación ITA-CONC presentó el mayor porcentaje de excedencias igual a 0.93 %.

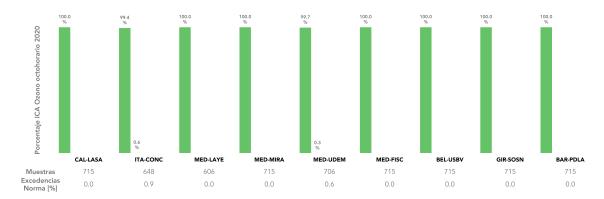


Figura 6.4: Variación porcentual de las distintas categorías del ICA para las concentraciones octohorarias de Ozono

7 Óxidos de Nitrógeno (NO_x)

La suma entre el Dióxido de Nitrógeno (NO_2) y el Monóxido de Nitrógeno (NO) se conoce como los Óxidos de Nitrógeno (NO_x) . Ambas moléculas forman juntas una familia química. El NO es el oxido de nitrógeno que más se forma durante los procesos de combustión mientras que el NO_2 es emitido en pequeñas cantidades. El NO_2 también se forma dentro de la atmósfera por los procesos de oxidación del NO, pudiendo alcanzar concentraciones considerables en áreas altamente contaminadas.

La red de calidad del aire cuenta con 7 estaciones de monitoreo automático de NO_x , NO_2 y NO ubicadas en 4 de los 10 municipios del Área Metropolitana del Valle de Aburrá. La Figura 7.1 presenta el mapa con la ubicación geográfica de las diferentes estaciones.

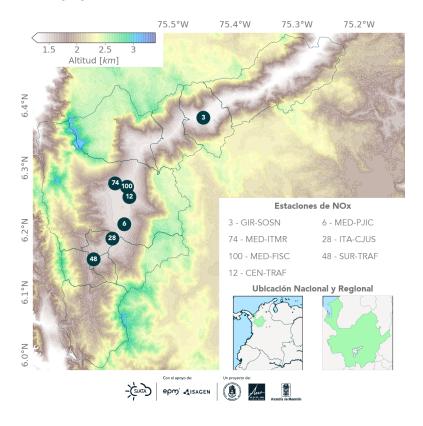


Figura 7.1: Estaciones automáticas de monitoreo de NO_x

El dióxido de nitrógeno es de especial interés dado su papel esencial en la formación de ozono troposférico, además de representar un riesgo para la población pudiendo afectar las funciones respiratorias mediante la irritación del tracto respiratorio.

Ciclo Diurno de la Concentración de NO_x

La Figura 7.2 presenta el ciclo diurno de la concentración de NO_x para las diferentes estaciones de monitoreo automático. Puede observarse como existe un comportamiento similar en cada una de las gráficas, las cuales presentan un ciclo bimodal para la concentración de NO_x a lo largo del día, con un período de mayores concentraciones entre las 06:00 y las 10:00 y uno un poco menos pronunciado entre las 19:00 y las 23:00.

Para comprender el comportamiento diurno de los NO_x , es necesario mencionar algunas características importantes en la química de estos contaminantes. En primer lugar durante el día el NO_2 y el NO se interconvierten mediante el ciclo fotoquímico de los NO_x , sin embargo durante la noche el NO_2 no puede dividirse por fotolisis, y por tanto la química de la familia NO_x resulta ser muy diferente, el NO reacciona con el O_3 para formar NO_2 , y este último a su vez reacciona con O_3 para formar NO_3 , es por tal motivo que se espera que las concentraciones de ambos contaminantes sean mucho menores en la noche que en el día, y que a su vez la concentración del NO sea menor que la del NO_2 . Otro aspecto importante para el entendimiento del ciclo diurno es el papel de la meteorología. Como ya se ha mencionado anteriormente la estabilidad juega un papel muy importante en la mezcla y dispersión de contaminantes, por tal motivo es de esperarse que en las horas de la tarde se presenten las mínimas concentraciones de NO_x , NO_2 y NO.

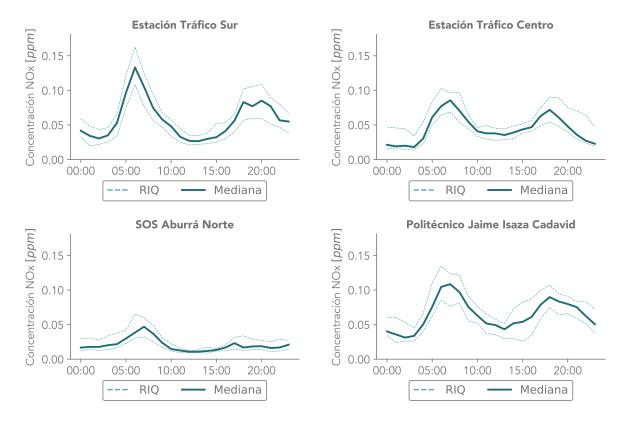


Figura 7.2: Ciclo diurno de NO_x para las estaciones automáticas. Nota: En la Tabla 2.4 se relacionan con más detalle los nombres de las estaciones.

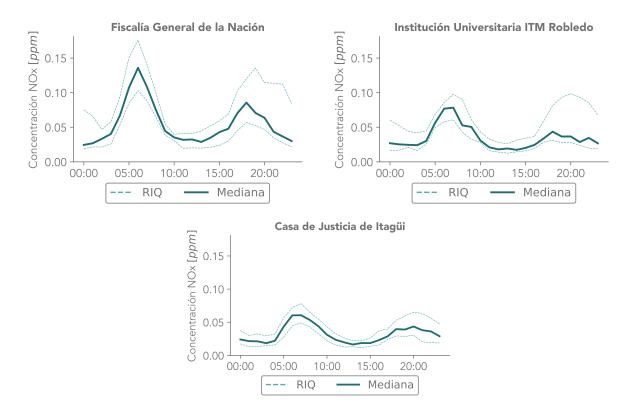
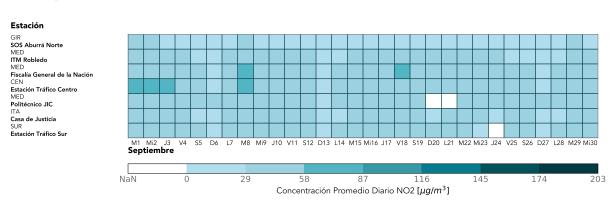



Figura 7.2: Continuación

Nota: En la Tabla 2.4 se relacionan con más detalle los nombres de las estaciones.

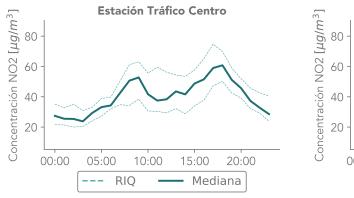
Concentración Promedio Diaria de NO₂

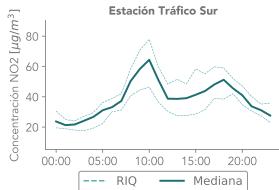
En la Figura 7.3 se presenta la concentración diaria de NO_2 obtenida durante el mes de Septiembre de 2020 para las distintas estaciones de monitoreo automático.

Figura 7.3: Concentraciones de NO_2 para las estaciones automáticas. Nota: En la gráfica NaN corresponde a datos faltantes.

La estación MED-FISC presentó la concentración horaria más alta durante el mes de Septiembre de 2020, igual a 137.0 $\mu g/m^3$. Por otra parte, la mínima concentración horaria, igual a 0.0 $\mu g/m^3$, se registró en la estación MED-FISC.

En la Tabla 7.1 se presentan la concentración promedio, los valores máximos horarios (VM1H) y el número de excedencias a la Norma Horaria (NEN1H) para las concentraciones de NO_2 en cada una de las estaciones. Puede observarse como durante el mes, y para las diferentes estaciones, no se presentaron excedencias a la norma horaria.


	GIR- SOSN	MED- ITMR	MED- FISC	CEN- TRAF	MED- PJIC	ITA- CJUS	SUR- TRAF
MEDIA	24.1	35.3	42.8	41.9	41.8	33.5	39.0
VM1H	89.8	103.6	137.0	119.3	131.2	92.3	107.1
NEN1H	0	0	0	0	0	0	0


Tabla 7.1: Estadísticos Septiembre 2020 NO_2

Ciclo Diurno de la Concentración de NO₂

La Figura 7.4 presenta el ciclo diurno de la concentración de NO_2 para las diferentes estaciones de monitoreo automático. Puede observarse que algunas de las estaciones presentan un comportamiento bimodal para la concentración de NO_2 a lo largo del día, con un período de mayores concentraciones entre las 06:00 y las 10:00 y uno un poco menos pronunciado entre las 19:00 y las 23:00.

Para entender el comportamiento del ciclo diurno de este contaminante se remite a la explicación del ciclo diurno de los NO_x descrito en la sección 7.

Figura 7.4: Ciclo diurno de NO_2 para las estaciones automáticas. Nota: En la Tabla 2.4 se relacionan con más detalle los nombres de las estaciones.

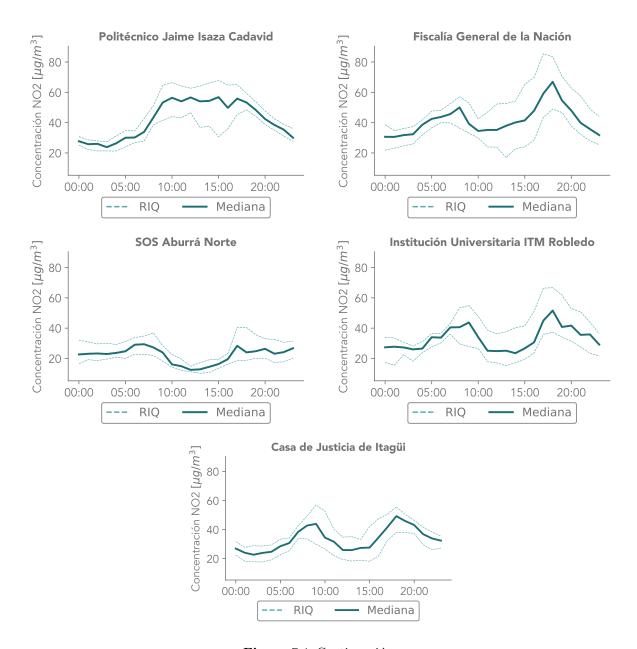


Figura 7.4: Continuación

loatfootNota: En la Tabla 2.4 se relacionan con más detalle los nombres de las estaciones.

Índice de Calidad del Aire (ICA) para las concentraciones horarias de NO₂.

La Figura 7.5 muestra la variación porcentual de las categorías de ICA para las concentraciones horarias de NO_2 en las diferentes estaciones durante el mes Septiembre de 2020. Puede observarse como la mayoría de estaciones presentaron valores de ICA equivalentes a la clasificación buena. Es posible notar que no se presentaron excedencias a la norma horaria en ninguna de las estaciones de monitoreo de NO_2 La estacion SUR-TRAF obtuvo la menor cantidad de muestras horarias en el mes con un total de 699.

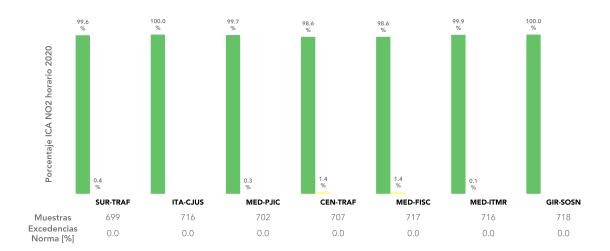
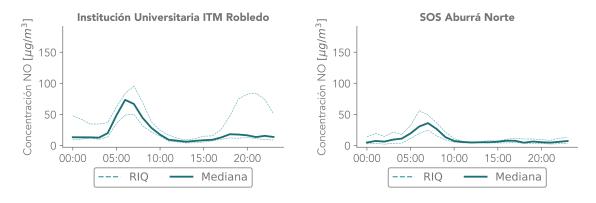



Figura 7.5: Porcentaje de las distintas clasificaciones del ICA para las concentraciones horarias de NO_2

Ciclo Diurno de la Concentración de NO

La Figura 7.6 presenta el ciclo diurno de la concentración de NO para las diferentes estaciones de monitoreo automático. Puede observarse como no existe un comportamiento similar en cada una de las gráficas, presentándose tanto comportamientos unimodales como bimodales en las distintas estaciones.

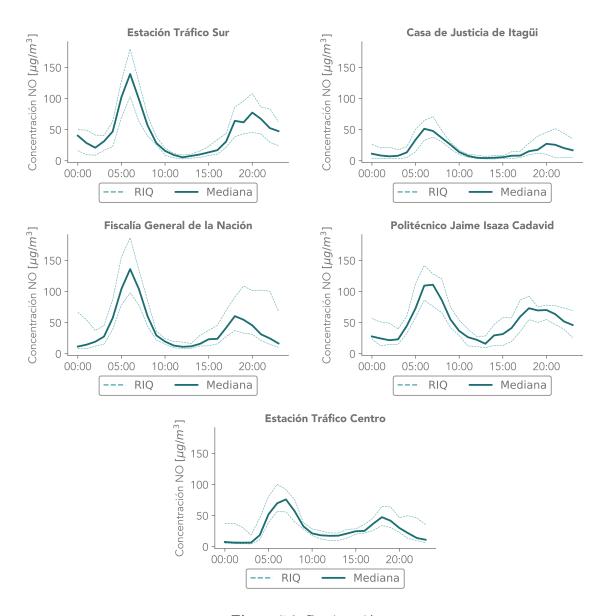

Para entender el comportamiento del ciclo diurno de este contaminante se remite a la explicación del ciclo diurno de los NO_x . A partir de la Figura 7.6 es posible observar para algunas estaciones la disminución significativa de las concentraciones de NO durante las horas de la noche, tal y como se expuso anteriormente. Este tipo de comportamiento podria relacionarse con la interacción con otras dinámicas.

Figura 7.6: Ciclo diurno de NO para las estaciones automáticas. Nota: En la Tabla 2.4 se relacionan con más detalle los nombres de las estaciones.

Figura 7.6: Continuación Nota: En la Tabla 2.4 se relacionan con más detalle los nombres de las estaciones.

8 Monóxido de Carbono (CO)

El monóxido de Carbono (CO) es un contaminante criterio monitoreado por la Red de Calidad del Aire del Valle de Aburrá. Sus principales fuentes emisoras provienen de la quema de combustible fósil como la gasolina o el petróleo, así como la combustión de madera (Área Metropolitana del Valle de Aburrá, 2015). La exposición a este contaminante puede reducir el transporte de oxígeno en el cuerpo, representando así un alto riesgo para la población.

La Red de Calidad del Aire cuenta con 2 estaciones de monitoreo automático de CO, ubicadas en 2 de los 10 municipios del Área Metropolitana del Valle de Aburrá. La Figura 8.1 presenta el mapa con la ubicación geográfica de las diferentes estaciones automáticas de CO.

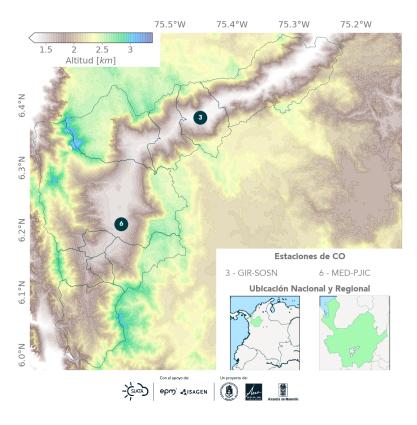


Figura 8.1: Estaciones automáticas de monitoreo de CO.

Concentraciones Horarias y Octohorarias de CO.

En la Tabla 8.1 se presentan los valores máximos horarios (VM1H) y octohorarios (VM8H) de las concentraciones de monóxido de carbono obtenidas durante el mes de Septiembre de 2020 para las distintas estaciones de monitoreo. Adicionalmente se presentan el número de excedencias a las normas horaria (NEN1H) y octohoraria (NEN8H). Puede observarse como durante el mes y para las diferentes estaciones

no se presentaron excedencias a la norma octohoraria colombiana (Definida como 5000 $\mu g/m^3$ en la Resolución 2254 del 2017). La estación MED-PJIC obtuvo la concentración octohoraria más alta durante el mes de Septiembre de 2020 igual a 3457.5 $\mu q/m^3$. En esta misma estación se obtuvo la concentración horaria más alta igual a $4074.6 \ \mu q/m^3$. En cuanto a la norma horaria colombiana (Definida como 35000 $\mu g/m^3$ en la Resolución 2254 del 2017), no se presentaron excedencias al nivel máximo permisible.

	GIR- SOSN	MED- PJIC
MEDIA	454.2	1839.8
VM1H	1504.2	4074.6
NEN1H	0	0
VM8H	1199.6	3457.5
NEN8H	0	0

Tabla 8.1: Resumen estadístico de las concentraciones de CO, Septiembre 2020

Ciclo Diurno de la Concentración de CO

La Figura 8.2 presenta el ciclo diurno de la concentración de CO para las diferentes estaciones de monitoreo automático. Puede observarse un comportamiento bimodal condicionado principalmente por el ciclo diurno del tráfico y la inestabilización de la atmósfera.

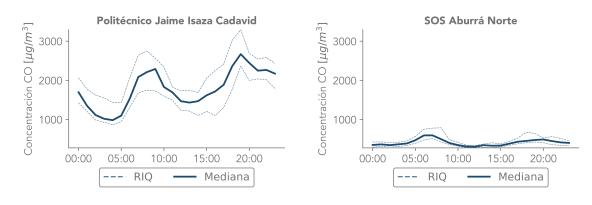


Figura 8.2: Ciclo Diurno de CO para la estación MED-PJIC. Nota: En la Tabla 2.4 se relacionan con más detalle los nombres de las estaciones.

Índice de Calidad del Aire (ICA) para concentraciones octoborarias de CO

La Figura 8.3 muestra la variación porcentual de las categorías de calidad del aire asociadas a las concentraciones octohorarias en la estación durante el mes de Septiembre. Puede observarse como las estaciones presentaron valores de ICA equivalentes a la clasificación buena.

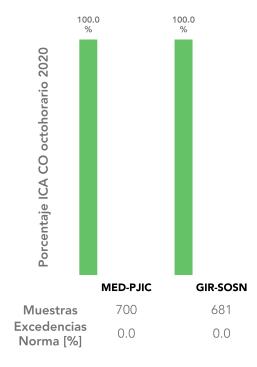


Figura 8.3: Variación porcentual de las categorías de calidad de aire para las concentraciones horarias de Co en las estaciones de monitoreo.

9 Dióxido de Azufre (SO₂)

El dióxido de azufre (SO₂) es uno de los contaminantes criterios medidos por la Red de Calidad del Aire del Valle de Aburrá. Sus fuentes de emisión se atribuyen principalmente a los procesos de combustión del petróleo, el diesel, el carbón y el gas natural, los cuales tienen azufre entre sus componentes. El dióxido de azufre puede afectar las funciones respiratorias aún en bajas concentraciones y es uno de los principales precursores de la lluvia ácida.

La red de calidad del aire cuenta con 1 estación de monitoreo automático de SO_2 , ubicada en el municipio de Girardota. La Figura 9.1 presenta el mapa con la ubicación geográfica de la estación automática de SO_2 :

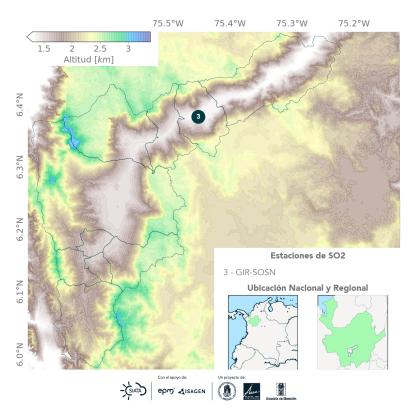


Figura 9.1: Estación automática de monitoreo de SO₂

Concentración Promedio Diaria de SO₂

En la Figura 9.2 se presenta la variación de las concentraciones promedio diarias de SO_2 obtenidas durante el mes de Septiembre de 2020 para la estación GIR-SOSN. Puede observarse como durante el mes no se presentaron excedencias a la norma diaria colombiana (Definida como 50 $\mu g/m^3$ en la Resolución 2254 del 2017). La concentración diaria máxima durante el mes de Septiembre de 2020 fue igual a 32.5

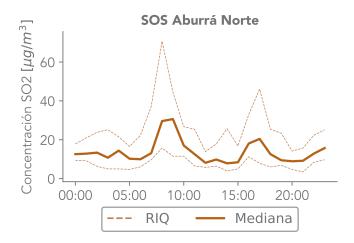
 $\mu g/m^3$. En cuanto a la norma horaria colombiana, definida como 100 $\mu g/m^3$ en la Resolución 2254 del 2017, se presentaron un total de 6 excedencias.

Figura 9.2: Concentración Diaria de SO_2 para la estación automática. Nota: En la gráfica NaN corresponde a datos faltantes.

La Tabla 9.1 presenta los valores medios, mínimos y máximos de la concentración de SO_2 obtenidos en la estación GIR-SOSN.

	GIR- SOSN
CMD	24
MAX	32.5
MEDIA	18.2
MIN	8.9
NEND	0
VM1H	132.0
NEN1H	6

Tabla 9.1: Estadísticos Septiembre 2020 SO2


En la Tabla, CMD: Cantidad de Muestras Diarias; MAX, MIN: Concentraciones máximas y mínimas diarias obtenida durante el mes; NEND: Número de excedencias a la norma diaria; VM1H: Valor máximo horario; NEN1H: Número de excedencias a la norma horaria; NP: No se presenta resultado dado que no se obtuvo el $75\,\%$ de los datos válidos requeridos.

Ciclo Diurno de la Concentración de SO₂

La Figura 9.3 presenta el ciclo diurno de la concentración de SO_2 para la estación GIR-SOSN. Puede observarse como existe un comportamiento unimodal de las concentraciones de SO_2 a lo largo del día, con un máximo cerca de las 09:00 AM.

Figura 9.3: Ciclo diurno de la concentración de SO_2 para la estación automática. Nota: En la Tabla 2.4 se relacionan con más detalle los nombres de las estaciones.

Índice de Calidad del Aire (ICA) para las concentraciones horarias de SO_2

La Figura 9.4 muestra la variación porcentual de las categorías de calidad de aire asociadas a las concentraciones horarias de SO_2 en la estación GIR-SOSN durante el mes de Septiembre del 2020. Es posible observar que la mayoría del mes se alcanzaron concentraciones categorizadas como buenas.

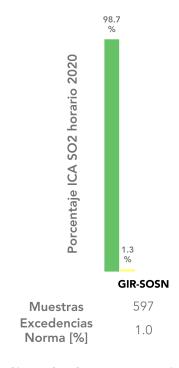


Figura 9.4: Porcentaje de días en las distintas categorías del ICA para la estación de SO₂

10 Meteorología

El monitoreo de variables meteorológicas es de especial importancia para el entendimiento de la calidad del aire en una región determinada, debido al papel fundamental que representa para el transporte y dispersión de contaminantes. La red de calidad del aire cuenta con 16 estaciones de monitoreo automático de variables meteorológicas, ubicadas en 8 de los 10 municipios del Área Metropolitana del Valle de Aburrá. La Figura 10.1 presenta el mapa con la ubicación geográfica de las diferentes estaciones automáticas:

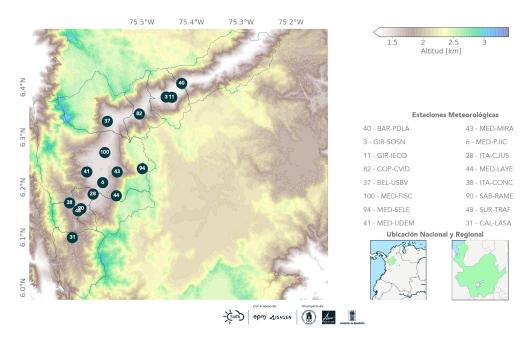


Figura 10.1: Estaciones automáticas de monitoreo de Meteorologia

La Tabla 10.1 muestra el porcentaje de datos válidos para las variables meteorológicas en cada una de las estaciones de monitoreo. En esta tabla, P es presión atmosférica, PPT es precipitación, T es temperatura del aire, RG es radiación solar global, HR representa humedad relativa, VV es la velocidad del viento, y DV es la dirección del viento. Según los resultados mostrados, en la estación GIR-IECO se obtuvo un porcentaje de datos inferior al 75 %. Esta situación estuvo relacionada con actos de vandalismo que afectaron el correcto funcionamiento de la estación durante el mes así como con inconsistencias en la transmisión y en el almacenamiento de los datos..

Es necesario aclarar que del total las estaciones meteorológicas reportadas en este informe, los sensores ubicados en las estaciones BEL-USBV, MED-FISC e ITA-CJUS son marca Met-One y miden radiación incidente, mientras que los demás equipos son marca Thies y Vaisala. Los datos pertenecientes a los sensores Met-One son procesados y validados por el equipo de calidad del aire del SIATA, que a su vez se encarga de la operación de los equipos de monitoreo de calidad de aire y ruido ambiental. En el caso de las estaciones meteorológicas Thies y Vaisala, el mantenimiento, la recepción y la validación de los datos obtenidos está a cargo del área de hidrometeorología del SIATA. Dicho proceso se hace de manera integral

con los demás equipos técnicos pertenecientes al proyecto, y se completan transcurridos dos meses a partir del mes de la medición, por esta razón los porcentajes de datos válidos pueden variar si son consultados antes del tiempo de cierre. La calidad de los datos de estas estaciones depende, además de los procesos de validación propios del área de hidrometeorología, de los protocolos de actualización manual de datos adquiridos con el fin de completar las series de tiempo medidas en cada variable con el fin de obtener el mayor número posible de datos catalogados de buena calidad.

Tabla 10.1: Porcentaje de datos válidos Meteorología

Estaciones	P	PPT	т	RG	HR	vv	DV
BAR-PDLA	99.7	99.7	99.7		99.7	99.7	99.7
GIR-SOSN	79.9	79.9	79.9		79.9	79.9	79.9
GIR-IECO	100.0	100.0	100.0		100.0	100.0	100.0
COP-CVID	99.7	99.7	99.7		99.7	99.7	99.7
BEL-USBV	97.6		98.2	99.7	99.7	90.3	99.7
MED-FISC	98.6	99.9	97.9	99.9	99.9	99.9	99.9
MED-SELE	96.1	96.1	96.1		95.8	96.1	96.1
MED-UDEM	100.0	100.0	100.0		100.0	100.0	100.0
MED-MIRA	81.7	81.7	81.7		81.7	81.7	81.7
MED-PJIC	99.2	99.3	99.3		99.3	99.3	99.3
ITA-CJUS	96.2		99.0	100.0	100.0	97.8	100.0
MED-LAYE	95.8	95.8	95.8		95.8	95.8	95.8
ITA-CONC	100.0	100.0	100.0		99.7	100.0	100.0
SUR-TRAF	99.7	99.7	99.7		99.7	99.7	99.7
SAB-RAME	100.0	100.0	100.0		100.0	100.0	100.0
CAL-LASA	80.1	80.1	80.1		80.0	80.1	80.1

Ciclo Diurno de la Radiación Solar, Temperatura y Humedad Relativa

La Figura 10.2 presenta el ciclo diurno de las variables meteorológicas radiación solar, temperatura y humedad relativa. Es posible observar en esta figura la fuerte relación que existe entre las diferentes variables; la temperatura depende esencialmente de la radiación solar, es por esto que se observa claramente como el máximo de ambas variables se encuentra cerca del medio día.

La variación de la humedad relativa se puede asociar a su vez a la temperatura del aire, dado que a mayor temperatura, mayor evaporación. Se observa por tanto para las diferentes estaciones que a medida que la temperatura incrementa, disminuye la humedad relativa, presentando los valores mínimos cerca del medio día. Las diferencias en el máximo de la radiación solar entre los distintos puntos de monitoreo se deben principalmente a factores como la nubosidad.

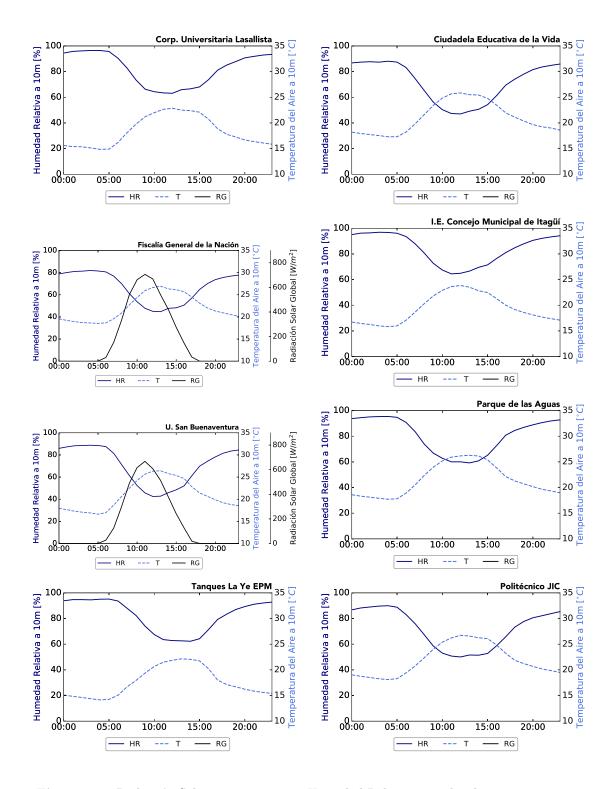


Figura 10.2: Radiación Solar, Temperatura y Humedad Relativa para las distintas estaciones

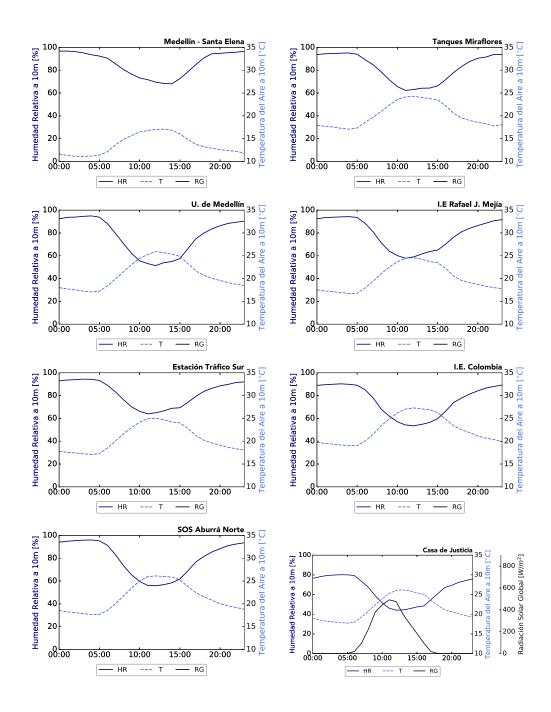


Figura 10.2: Continuación

Precipitación

La Figura 10.3 presenta la precipitación horaria y acumulada para el mes de Septiembre de 2020. Por otra parte, la Tabla 10.2 muestra el máximo acumulado horario, máximo acumulado diario, el acumulado mensual y los días sin precipitación para las distintas estaciones en las que se monitorea esta variable.

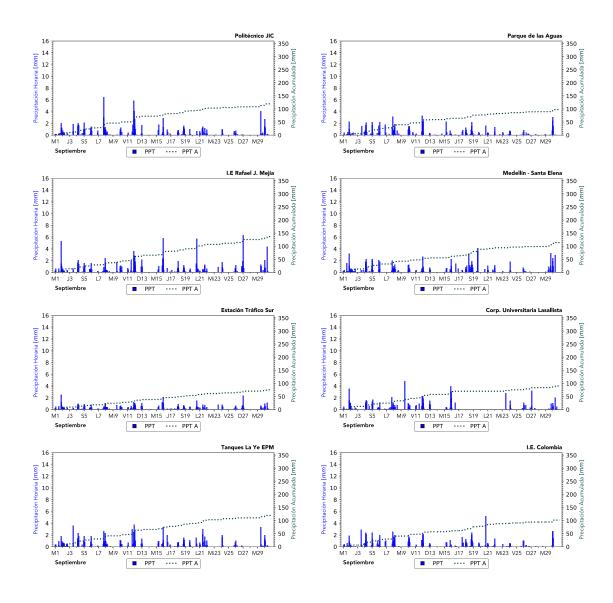


Figura 10.3: Precipitación horaria y acumulada para las distintas estaciones

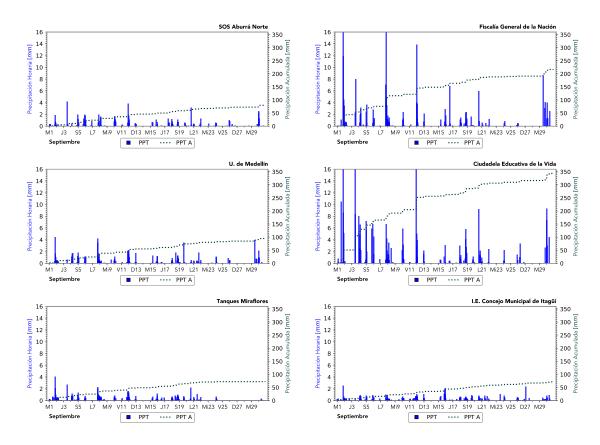


Figura 10.3: Continuación

Nota: En la Tabla 2.4 se relacionan con más detalle los nombres de las estaciones.

Tabla 10.2: Estadísticos Precipitación

Estación	Acumulado Mensual (mm)	Días Sin Precipitación	Máximo Acumulado Diario (mm)	Máximo Acumulado Horario (mm)
BAR-PDLA	97.9	1.0	9.5	3.3
GIR-SOSN	79.8	0.0	7.7	4.1
GIR-IECO	101.9	0.0	11.2	5.3
COP-CVID	344.0	0.0	54.6	46.1
MED-FISC	216.8	5.0	40.9	19.7
MED-SELE	114.1	3.0	14.4	4.1
MED-UDEM	95.0	2.0	12.2	4.5
MED-MIRA	72.8	5.0	9.7	4.0
MED-PJIC	120.0	2.0	14.0	6.5
MED-LAYE	119.8	0.0	12.0	3.8
ITA-CONC	71.5	2.0	7.8	2.5
SUR-TRAF	75.8	1.0	6.8	2.5
SAB-RAME	137.1	2.0	11.3	6.3
CAL-LASA	90.3	6.0	8.6	4.8

Vientos

Las Figuras 10.4, 10.5 y 10.6 presentan las rosas de vientos diurnas, nocturnas y totales, respectivamente, para las diferentes estaciones meteorológicas. Estas rosas de viento brindan información acerca de la distribución de las velocidades de los vientos y de la frecuencia con la que estos se presentan con determinada orientación a lo largo del día.

El nombre de cada estación según el número en negrilla presentado en cada una de las rosas, se muestra en la Figura 10.1

Como puede observarse a partir de las Figuras, la orientación de donde provienen los vientos varia de estación a estación dentro del área metropolitana tanto en horario diurno como nocturno, así mismo sucede con la velocidad de los vientos.

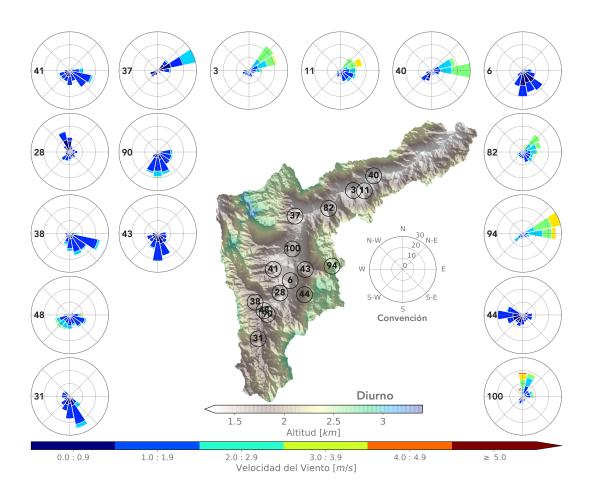


Figura 10.4: Rosas de Viento diurnas para las distintas estaciones

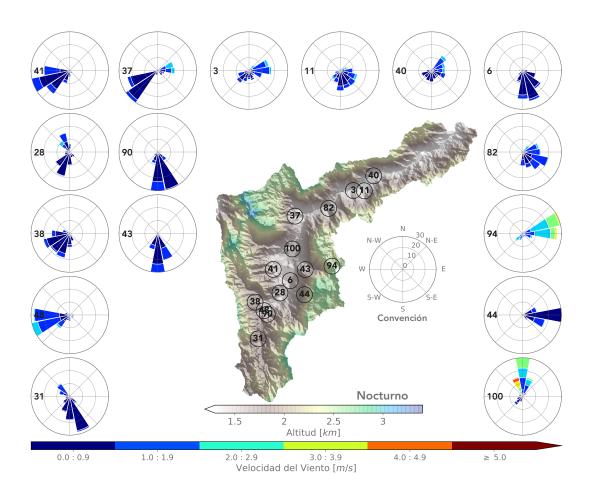


Figura 10.5: Rosas de Viento nocturnas para las distintas estaciones

La estación con las velocidades diurnas más altas durante el mes corresponde a la estación MED-SELE, con una velocidad promedio de $2.79 \ m/s$ y la estación con velocidades diurnas más bajas corresponde a la estación ITA-CJUS con una velocidad promedio de $0.86\ m/s$. En el caso nocturno, la mayor velocidad se registró en la estación MED-SELE con un promedio de $2.35 \ m/s$, mientras que la velocidad más baja se presentó en la estación ITA-CJUS con un promedio de $0.58\ m/s$.

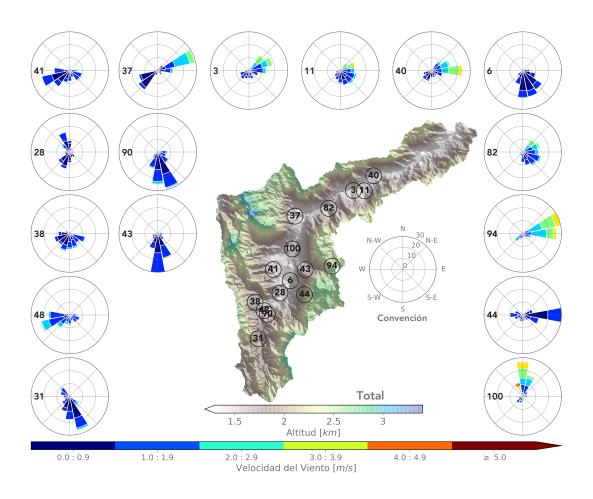


Figura 10.6: Rosas de Viento totales para las distintas estaciones.

11 Anexos

Anexo 1. Métodos de medición

Tabla 11.1: Métodos y rangos de operación para los equipos pertenecientes a la REDMCA

Contaminante	${ m M\'etodo/Procedimiento}$	Estado del Contaminante	Rango de operación del equipo
PM10	Toma de muestras para la determinación de la concentración de partículas menores a 10 μm en el aire ambiente, U.S. EPA RFNA 0202-141 E-CFR Titulo 40, Parte 50, Capítulo I, Subcápitulo C, Apéndice J. Alto Volumen PM10, Procedimiento P-GAA-RA-03.	Particulado	2-750 $\mu g/m^3$
PM10	Determinación directa en campo de la determinación de la concentración de partículas menores a 10 μm en el aire ambiente, Método equivalente automático U.S. EPA EQPM-0798-122 Monitor de Partículas BAM-1020. Procedimiento P-GAA-RA-05.	Particulado	$0-1000 \ \mu g/m^3$
PM2.5	Determinación directa en campo de la concentración de partículas menores a $2.5~\mu m$ en el aire ambiente, método equivalente automático U.S. EPA EQPM-0308-170 Monitor de Partículas BAM-1020. Procedimiento P-GAA-RA-05.	Particulado	0-1000 $\mu g/m^3$
PM2.5	Determinación directa en campo de la concentración de partículas menores a $2.5~\mu m$ en el aire ambiente, método equivalente automático U.S. EPA EQPM-0715-266 Monitor de Partículas BAM-1020. Procedimiento P-GAA-RA-05.	Particulado	0-1000 $\mu g/m^3$
PM2.5	Toma de muestras para la determinación de la concentración de partículas menores a $2.5~\mu m$ en el aire ambiente U.S EPA EQPM-1013-209. Monitor de Partículas BAM1022. Procedimiento P-GAA-RA-17.	Particulado	2-200 $\mu g/m^3$

Tabla 11.1: Métodos y rangos de operación para los equipos pertenecientes a la REDMCA

Contaminante	Método/Procedimiento	Estado del Contaminante	Rango de operación del equipo
PM2.5	Toma de muestras para la determinación de la concentración de partículas menores a 2.5 μm en el aire ambiente, Método Referencia U.S. EPA RFPS-0498-116, CFR Título 40, parte 50, Capítulo I, Subcapítulo C, Apéndice L. Medición continua mediante muestreados de aire BGI modelo PQ200. Bajo Volumen. Procedimiento P-GAA-RA-10.	Particulado	$2-200 \ \mu g/m^3$
Ozono	Determinación directa en campo de la concentración de ozono O ₃ en el aire ambiente, método equivalente U.S. EPA-EQOA-0880-047 CFR Título 40, Capítulo I, Subcapítulo C, Medición continua mediante fotometría UV. Modelo 49C Marca Thermo. Procedimiento P-GAA-RA-07.	Gaseoso	0-50 ppb 0-1000 ppb $(0 - 98,15)$ $\mu g/m^3$ 0- $1963,07 \mu g/m^3$
Ozono	Determinación directa en campo de la concentración de ozono O ₃ en el aire ambiente, método equivalente U.S. EPA-EQOA-0992-087 CFR Título 40, Capítulo I, Subcapítulo C, Parte 50, Apéndice D. Medición continua mediante fotometría UV. Modelo 400E marca Teledyne. Procedimiento P-GAA-RA-12.	Gaseoso	0-100 ppb 0-10000 ppb (0 -196,31 $\mu g/m^3$ 0- 19630,67 $\mu g/m^3$)
СО	Determinación directa en campo de la concentración de Monóxido de Carbono CO en el aire ambiente, método de referencia U.S. EPA RFCA-0981-054 CFR Título 40, Capítulo I, Subcapítulo C, Parte 50, Apéndice C. Medición continua espectrometría infrarroja no dispersiva. Modelo 48C Marca Thermo. Procedimiento P-GAA-RA-11.	Gaseoso	0-1 ppm 0-1000 ppm (0 – 1145,60 $\mu g/m^3$ 0 – 1145603,27 $\mu g/m^3$)
CO	Determinación directa en campo de la concentración de Monóxido de Carbono CO en el aire ambiente, método automático de referencia U.S. EPA-RFCA-1093-093 CFR Título 40, Capítulo I, Subcapítulo C, Parte 50, Apéndice C. Mediante continua mediante fotometría infrarroja no dispersiva. Modelo 300E, marca Teledyne. Procedimiento P-GAA-RA-08.	Gaseoso	0-1 ppm 0-1000 ppm $(0 - 1145,60 \mu g/m^3 0 - 1145603,27 \mu g/m^3)$

Tabla 11.1: Métodos y rangos de operación para los equipos pertenecientes a la REDMCA

Contaminante	Método/Procedimiento	Estado del Contaminante	Rango de operación del equipo
SO_2	Determinación de Dióxido de Azufre SO ₂ en el aire ambiente, Método automático equivalente EPA-EQSA-0495-100 Título 40, Capítulo I, Subcapítulo C, Parte 50, Apéndice A1, Modelo 100E, marca Teledyne. Procedimiento P-GAA-RA-09.	Gaseoso	0-20 ppb 0-20000 ppb (0- $52,40 \ \mu g/m^3$ 0-52399,18 $\mu g/m^3$)
NO_x	Determinación de Óxido de Nitrógeno NO_x en el aire ambiente, Método automático de Referencia RFNA-1194-099 CFR Título 40, Capítulo I, Subcapítulo C, Parte 50, Apéndice F. Medición continua mediante la aplicación del método de quimiluminiscencia, modelo 200E marca Teledyne. Procedimiento PGAA-RA-13.	Gaseoso	0-50 ppb 0-20000 ppb
PM1	Toma de muestras para la determinación de la concentración partículas menores a 1 micra (PM1) en el aire ambiente. Medición continua mediante monitor de partículas E-BAM). Procedimiento P-GAA-RA-02.	Particulado	$5-65530 \\ \mu g/m^3$

Anexo 2. Identificación de muestras en los equipos manuales

2.1. Identificación de muestras de PM2.5

En la Tabla 11.2 se relaciona el número, la fecha de muestreo, y la fecha de pesaje de cada filtro utilizado en las estaciones manuales de PM2.5. Los filtros utilizados en estos equipos son filtros de teflón (PTFE 46.2 mm) de marca TISCH SCIENTIFIC, y la muestra ensayada corresponde a material particulado menor a 2.5 micrómetros (PM2.5). La integridad de la muestra se garantiza a través de la trazabilidad de las condiciones físicas del filtro utilizado y las condiciones ambientales durante el proceso de pesaje de acuerda a las condiciones generales del procedimiento P-GAA-RA-10.

Tabla 11.2: Identificación de filtros de las estaciones manuales de PM2.5

	BEL-JEGA		MED-	D-PJIC	
Fecha Muestreo	Número Filtro	Fecha Pesaje	Número Filtro	Fecha Pesaje	
2020-09-01	9E27095	2020-09-11	9E27086	2020-09-11	
2020-09-04	9E27090	2020-09-11	9E27087	2020-09-11	
2020-09-08	9E27091	2020-09-21	9E27089	2020-09-21	
2020-09-10	W93305863	2020-09-21	W93305862	2020-09-21	
2020-09-13	W93305864	2020-09-29	W93305865	2020-09-21	
2020-09-16	D9075128	2020-09-29	W93305866	2020-09-29	
2020-09-19	D9075127	2020-10-07	D9075132	2020-09-29	
2020-09-22	D9075109	2020-10-07	D9075129	2020-10-07	
2020-09-25	D9075110	2020-10-07	9H15068	2020-10-07	
2020-09-29	9E17707	2020-10-07	9H15069	N.D.	

ND: No Dato.

Anexo 3. Condiciones ambientales de muestreo

Las condiciones ambientales al interior del shelter son un factor importante para la correcta operación de los analizadores de gases, por lo que se hace necesario el seguimiento constante de la variabilidad de estas. La Agencia de Protección Ambiental de los Estados Unidos de América, EPA por sus siglas en inglés, en el Apéndice D del Quality Assurance Handbook, establece como rango válido para la temperatura, en un período de 24 horas, valores entre 20°C y 30°C además de una desviación estándar menor a 2.1 °C. A este requisito para el monitoreo de los gases se le suman las condiciones de medición especificadas para los analizadores, lo cuales permiten el cumplimiento de lo establecido por la EPA, y añaden la necesidad de asegurar condiciones de humedad relativa por debajo del 90 %. Cabe agregar que esta restricción no aplica para los equipos automáticos para el monitoreo de material particulado.

Los analizadores de NO₂, SO₂, CO y ozono están distribuidos en 13 estaciones. En cada una de estas se hace seguimiento de la temperatura y humedad al interior del shelter con el fin de garantizar el correcto desempeño de los diferentes equipos de gases. Los datos son usados para el seguimiento de las condiciones de medición en tiempo real y para la validación de las series de los diferentes contaminantes. En la Figura 11.1 se presentan las series obtenidas para cada una de las estaciones en el mes de Septiembre.

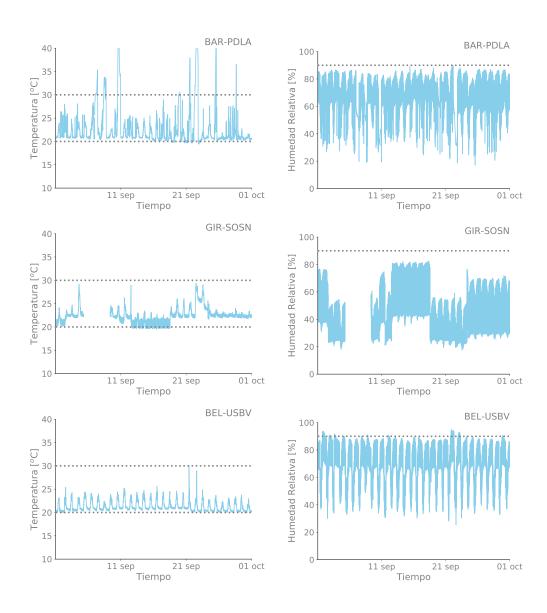


Figura 11.1: Condiciones de humedad y temperatura al interior del shelter

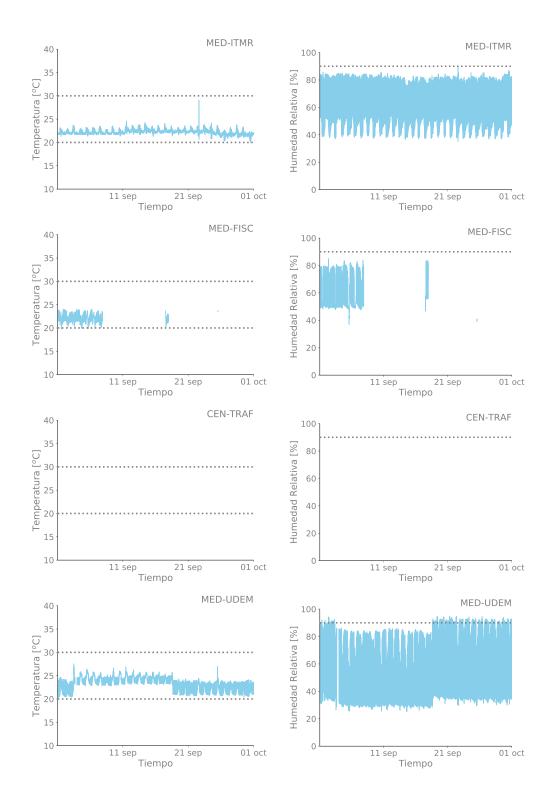


Figura 11.1: Continuación

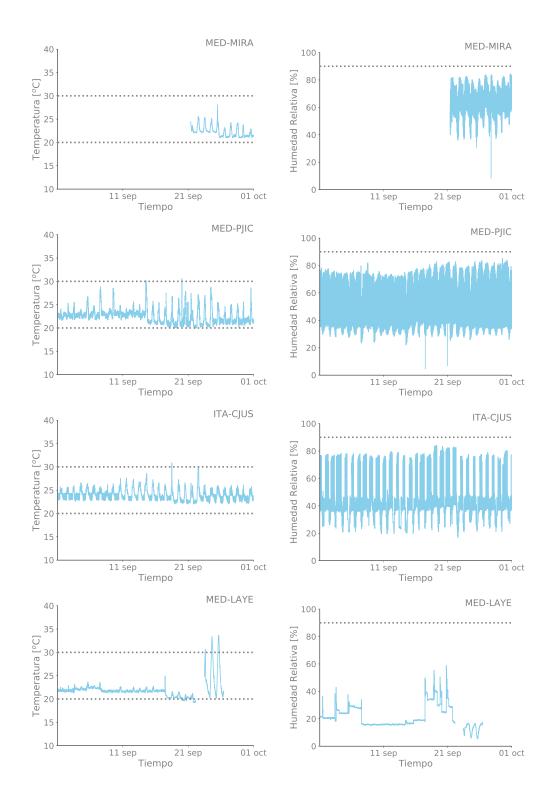


Figura 11.1: Continuación

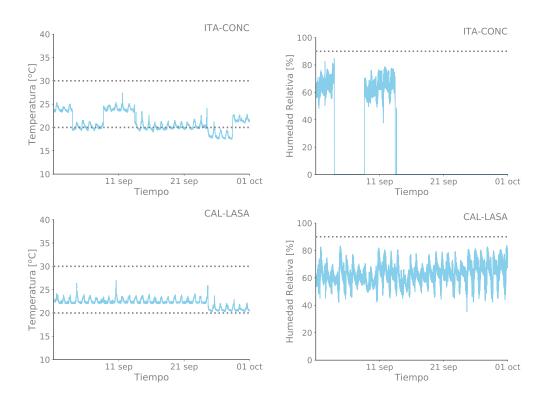


Figura 11.1: Continuación

Anexo 4. Series de las concentraciones de los contaminantes criterio

De la Figura 11.2 a la 11.9 se presentan las series de las concentraciones horarias de PM2.5, PM10, N_O , NO_2 , NO_x , Ozono, CO y SO_2 para las estaciones automáticas en medición de cada contaminante en el mes de Septiembre del 2020. La ausencia de datos en las series se asocian a tramas inválidas, datos faltantes o períodos anteriores o posteriores a la instalación de un equipo en una estación determinada.

Series de las concentraciones de PM2.5

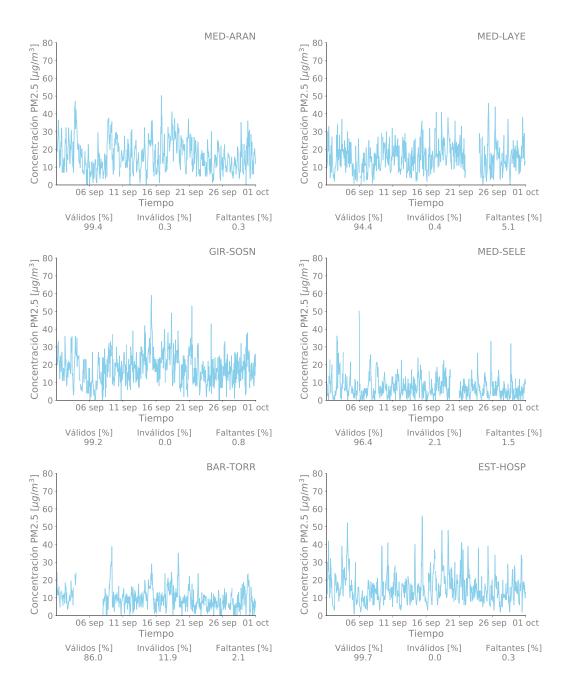


Figura 11.2: Series de las concentraciones de PM25

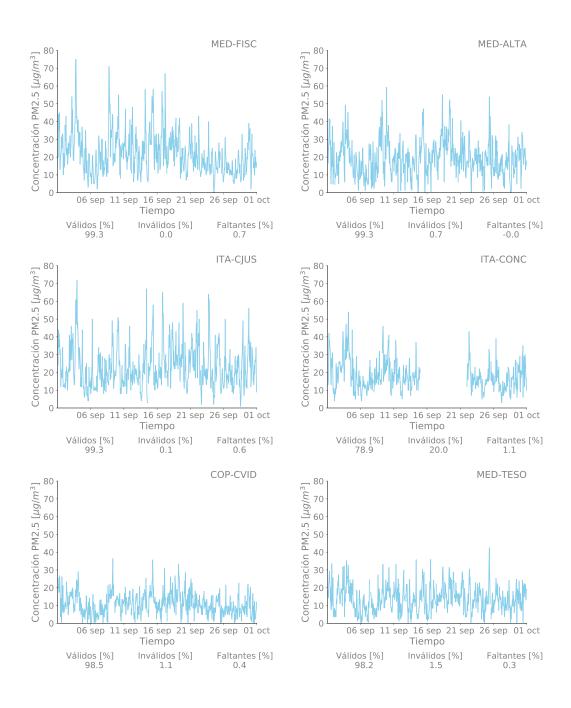


Figura 11.2: Continuación

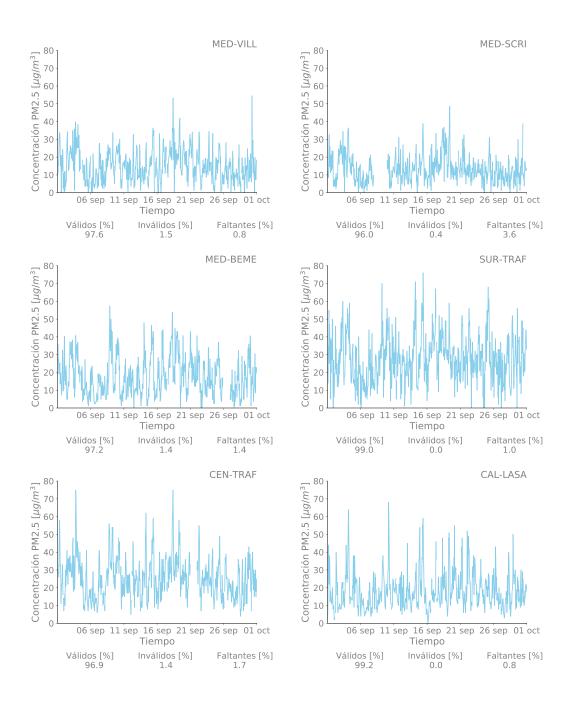


Figura 11.2: Continuación

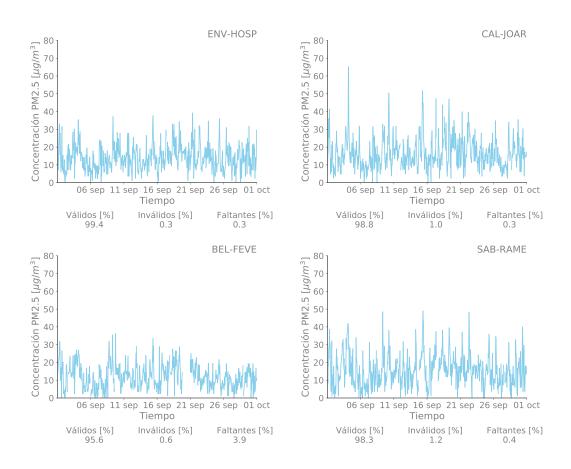


Figura 11.2: Continuación

Series de las concentraciones de PM10

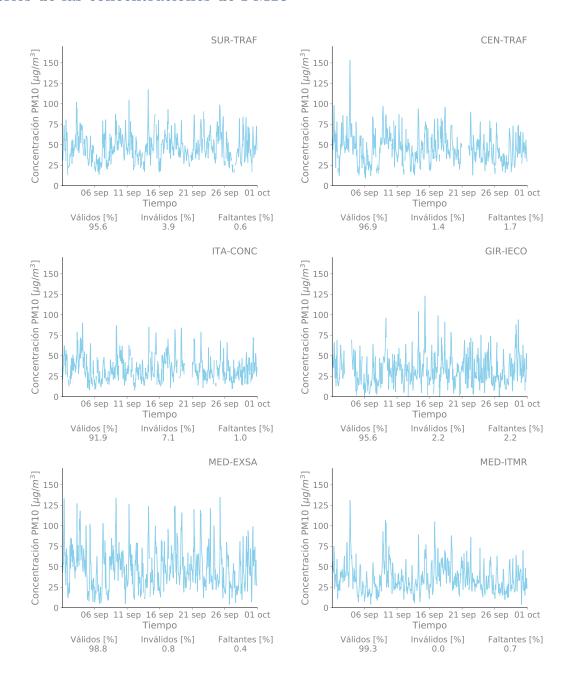


Figura 11.3: Series de las concentraciones de PM10

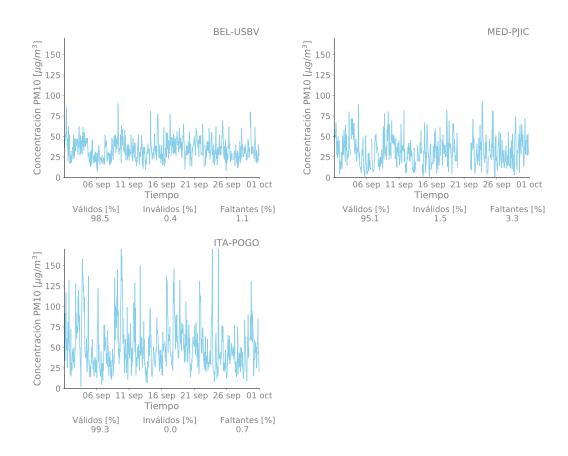


Figura 11.3: Continuación

Series de las concentraciones de NO

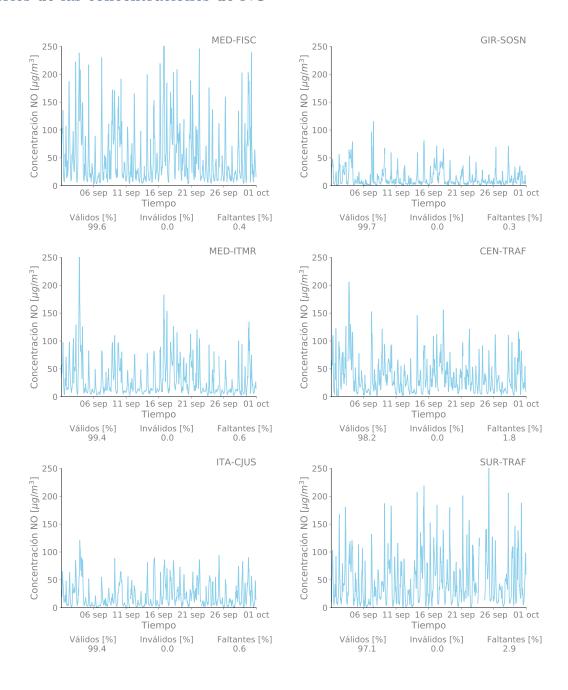


Figura 11.4: Series de las concentraciones de NO

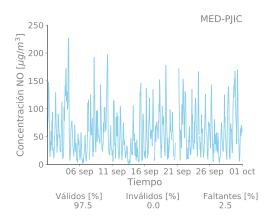


Figura 11.4: Continuación

Series de las concentraciones de NO2

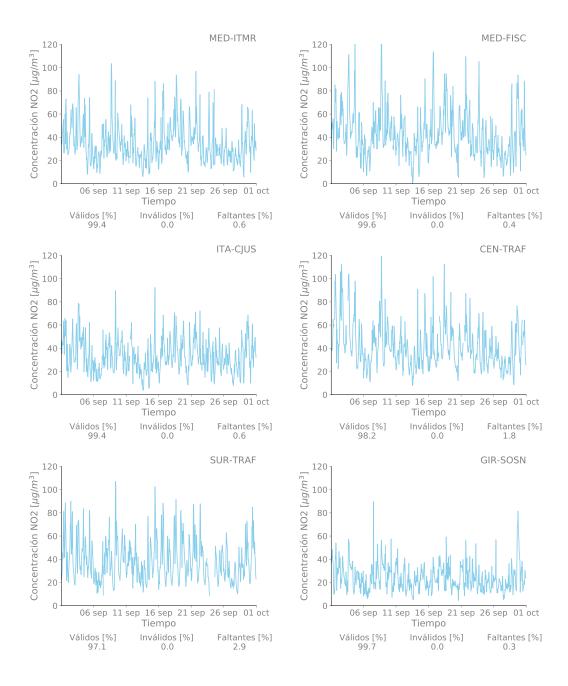


Figura 11.5: Series de las concentraciones de NO2

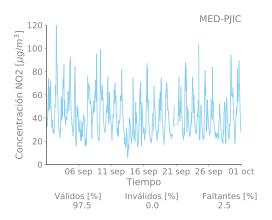


Figura 11.5: Continuación

Series de las concentraciones de NOx

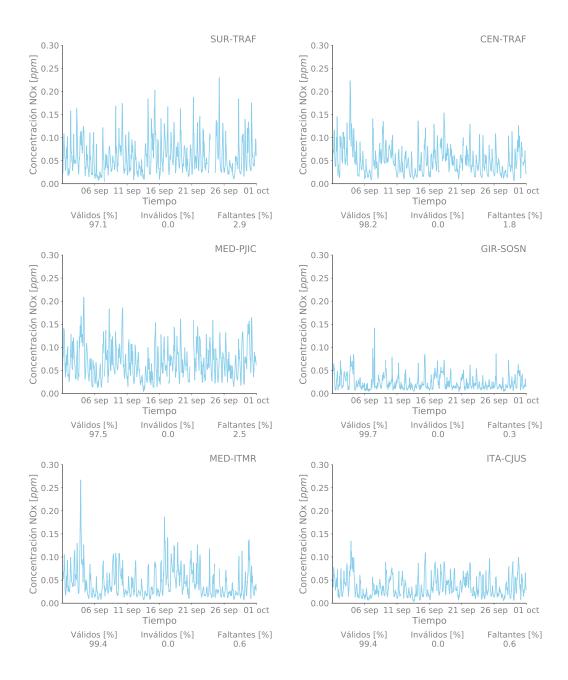


Figura 11.6: Series de las concentraciones de NOx

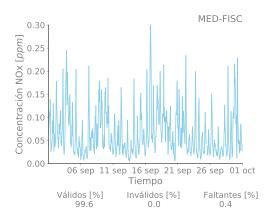


Figura 11.6: Continuación

Series de las concentraciones de Ozono

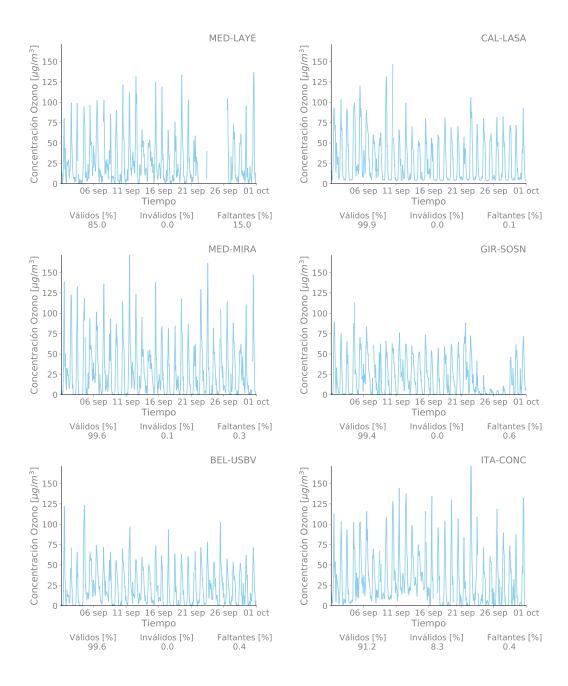


Figura 11.7: Series de las concentraciones de Ozono

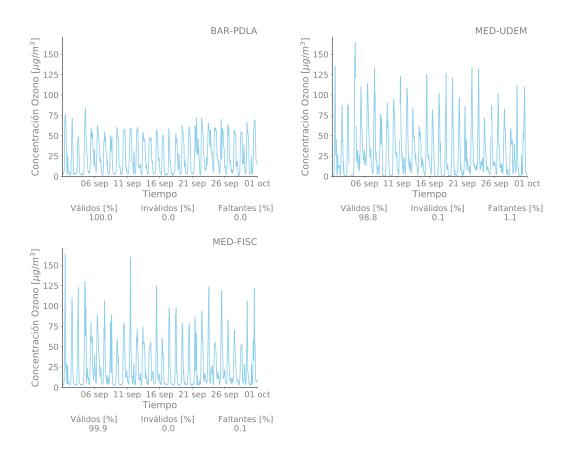


Figura 11.7: Continuación

Series de las concentraciones de CO

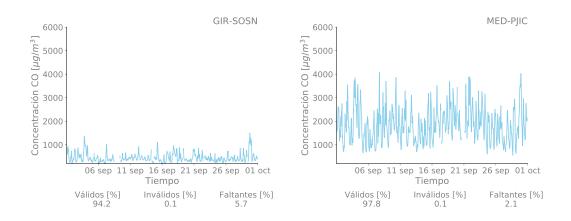


Figura 11.8: Series de las concentraciones de CO

Series de las concentraciones de SO2

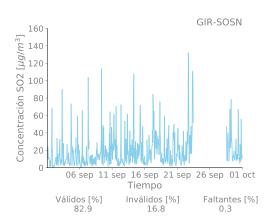


Figura 11.9: Series de las concentraciones de SO2

Referencias

Área Metropolitana del Valle de Aburrá. Clasificación Estaciones de Monitoreo de Calidad del Aire. (256), 2014.

Área Metropolitana del Valle de Aburrá. Inventario de Emisiones Atmosféricas del Valle de Aburrá, año base 2015. 2015.

Gabriel Jaime and Maya Vasco. Relación entre las partículas finas (pm2.5) y respirables (pm10) en la ciudad de Medellín. Revista Ingenierías Universidad de Medellín, 7(12):23–42, 2008.

Ministerio de Ambiente, Vivienda y Desarrollo Territorial. Manual de operación de sistemas de vigilancia de la calidad del aire. pages 1–142, 2010.

Ministerio de Ambiente y Desarrollo Sostenible. Relación 2254 del 2017. (Noviembre), 2017.

U.S. Environmental Protection Agency. A Guide to Air Quality and Your Health. (February), 2014.

FIN DEL INFORME

